I038 Types and Proofs

Faculty of Informatics
Autumn 1997
Extent and Intensity
2/0. 3 credit(s). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
Teacher(s)
prof. RNDr. Jiří Zlatuška, CSc. (lecturer)
Guaranteed by
Contact Person: prof. RNDr. Jiří Zlatuška, CSc.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Syllabus
  • meaning and denotation in logic, tarski and Heyting.
  • natural deduction: calculus, rules, computational interpretation.
  • Curry-Howard isomorphism: lambda-calculus, operational and denotational interpretation, conversion, isomorphism.
  • Normalization theorem: Church-Rosser property, weak normalization, strong normalization.
  • Sequent calculus: structural rules, intuitionistic version, identities, logical rules, properties of the cut-free system, translation between sequent calculus and natural deduction.
  • Strong normalization theorem: reducibility and its properties.
  • Gödels system T, calculus, normalization, expressive power.
  • Coherent spaces, stabil functions, paralel disjunction, product and function spaces, denotational semantics of System T.
  • Sums in natural deduction: problems, standard conversion, commuting conversions, functional calculus.
  • System F: calculus, simple types, free structures, inductive types, Curry-Howard isomorphism, strong normalization.
  • Coherent semantics of the sum; cut-elimination theorem; representation.
Language of instruction
Czech

  • Enrolment Statistics (recent)
  • Permalink: https://is.muni.cz/course/fi/autumn1997/I038