FI:PV177 Laboratory of Networks - Course Information
PV177 Laboratory of Advanced Network Technologies
Faculty of InformaticsAutumn 2024
- Extent and Intensity
- 0/2/0. 2 credit(s). Type of Completion: z (credit).
In-person direct teaching - Teacher(s)
- doc. RNDr. Eva Hladká, Ph.D. (lecturer)
RNDr. Tomáš Rebok, Ph.D. (lecturer)
RNDr. Martin Ukrop, Ph.D. (lecturer)
Ing. Jana Hozzová, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Eva Hladká, Ph.D.
Department of Computer Systems and Communications – Faculty of Informatics
Contact Person: doc. RNDr. Eva Hladká, Ph.D.
Supplier department: Department of Computer Systems and Communications – Faculty of Informatics - Prerequisites
- SOUHLAS
PV177/DataScience (Big Data Analytics in Practice) -- none - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 37 fields of study the course is directly associated with, display
- Course objectives
- Familiarization with the area and practical (team) project aimed at adopting the principles in one of the areas, which the course is specialized on in the particular semester.
In current semester, the course is specialized in the following areas:
1. PV177/DataScience (Big Data analytics in practice) -- the aim of this course's specialization is to introduce students to methods and tools for analyzing large data volumes (so-called Big Data), which will then be examined in the form of practical projects presented at the end of the semester. - Learning outcomes
- Getting new knowledge in the chosen area of interest and working on a practically-oriented (team) project.
- Syllabus
- 1. PV177/DataScience (Data Analytics in Practice):
Team project in one of the areas, which the course is specialized on in the particular semester: Big Data analytics, computer networks, grids or multimedia. Students can choose or are assigned a practical project (team-based, i.e. an assignment will be solved by a group of students). When solving the project, students will master the advanced understanding of a subject, acquire basic research methodology, will optionally perform the research and will present achieved results. The work progress will be evaluated on regular weekly or two-weekly seminars, where students will receive the necessary feedback on their undertakings.
The last seminar will be devoted to the overall evaluation and students will receive credits.
- 1. PV177/DataScience (Data Analytics in Practice):
- Literature
- Research Methods in Human-Computer Interaction; Harry Hochheiser, Jinjuan Heidi Feng, Jonathan Lazar; 2nd Ed. ISBN: 9780128093436, 2017.
- https://www.coursera.org/learn/statistical-inferences/
- STEVENS, W. Richard, Bill FENNER and Andrew M. RUDOFF. UNIX network programming. 3rd ed. Boston, Mass.: Addison-Wesley, 2004, xxiii, 991. ISBN 0-13-141155-1. info
- KUROSE, James F. Computer networking :a top-down approach featuring the Internet. Boston: Addison-Wesley, 2003, xvii, 752. ISBN 0-321-17644-8. info
- GOUDA, Mohamed G. Elements of network protocol design. New York: John Wiley & Sons, 1998, xviii, 506. ISBN 0471197440. info
- Teaching methods
- There are several projects and each student works on one of them often in cooperation with others. Students explore the given theme during the semester. During seminars, students will refer about their results in the project. Some course specializations may be supplemented with introductory lectures on the particular topic.
- Assessment methods
- Students are evaluated according to their activity on seminars, and the quality of achieved results and their presentations in front of their peers.
- Language of instruction
- English
- Further Comments
- The course is taught each semester.
The course is taught: every week.
- Enrolment Statistics (Autumn 2024, recent)
- Permalink: https://is.muni.cz/course/fi/autumn2024/PV177