FI:IB107 Computability and Complexity - Course Information
IB107 Computability and Complexity
Faculty of InformaticsAutumn 2005
- Extent and Intensity
- 2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- prof. RNDr. Luboš Brim, CSc. (lecturer)
doc. RNDr. Ivan Kopeček, CSc. (seminar tutor)
doc. Mgr. Jan Obdržálek, PhD. (seminar tutor)
RNDr. Jan Flasar, Ph.D. (assistant) - Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Luboš Brim, CSc. - Timetable
- Thu 15:00–16:50 D2
- Timetable of Seminar Groups:
IB107/02: Thu 11:00–11:50 B007, J. Obdržálek
IB107/03: Thu 12:00–12:50 B011, J. Obdržálek
IB107/04: Thu 13:00–13:50 B011, J. Obdržálek - Prerequisites (in Czech)
- IB005 Formal languages and Automata || I005 Formal Languages and Automata I || I505 Formal Languages and Automata I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 11 fields of study the course is directly associated with, display
- Course objectives
- The course introduces basic approaches and methods for classification of problems with respect to their algorithmic solvability. It explores theoretical and practical limits of computers usage and consequences these limitations have for advancing information technologies.
- Syllabus
- Problems and algorithms.
- Algorithms and models of computation. Basic models of computation. Church thesis.
- Classification of problems. Decidable, undecidable and partially decidable problems.
- Closure properties. Post correspondence problem. Selected undecidable problems in the theory of languages.
- Computational complexity. Feasible and unfeasible problems. Polynomial computational thesis.
- Reduction a completness in problem classes. Many-one reduction and polynomial reduction. Complete problems with respect to decidability, NP-complete problems. Applications.
- Non-sequential models of computation. Parallel computational thesis.
- Literature
- KOZEN, Dexter C. Automata and computability. New York: Springer, 1997, xiii, 400. ISBN 0387949070. info
- SIPSER, Michael. Introduction to the theory of computation. Boston: PWS Publishing Company, 1997, xv, 396 s. ISBN 0-534-94728-X. info
- BOVET, D. and Pierluigi CRESCENZI. Introduction to the theory of complexity. New York: Prentice-Hall, 1994, xi, 282 s. ISBN 0-13-915380-2. info
- KFOURY, A. J., Robert N. MOLL and Michael A. ARBIB. A programming approach to computability. New York: Springer-Verlag, 1982, viii, 251. ISBN 0-387-90743-2. info
- Assessment methods (in Czech)
- Zkouška je písemná a ústní. V případě zadání průběžných testů během semestru, mají tyto podíl nejvýše 30% na závěrečném hodnocení. Pomocné materiály nejsou povoleny.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- Teacher's information
- http://www.fi.muni.cz/usr/brim/IB107
- Enrolment Statistics (Autumn 2005, recent)
- Permalink: https://is.muni.cz/course/fi/autumn2005/IB107