FI:MB005 Foundations of mathematics - Course Information
MB005 Foundations of mathematics
Faculty of InformaticsAutumn 2005
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Ondřej Klíma, Ph.D. (lecturer)
Mgr. Marie Koktavá, Ph.D. (seminar tutor)
Mgr. Andrea Pavliňáková (seminar tutor)
RNDr. Veronika Svobodová, Ph.D. (seminar tutor)
RNDr. Pavla Zagorová (seminar tutor) - Guaranteed by
- prof. RNDr. Jiří Rosický, DrSc.
Faculty of Informatics
Contact Person: prof. RNDr. Jiří Rosický, DrSc. - Timetable
- Tue 16:00–17:50 D3
- Timetable of Seminar Groups:
MB005/02: Mon 12:00–13:50 B003, V. Svobodová
MB005/03: Mon 16:00–17:50 B011, A. Pavliňáková
MB005/04: Tue 10:00–11:50 B007, P. Zagorová
MB005/05: Tue 12:00–13:50 B007, P. Zagorová
MB005/06: Mon 10:00–11:50 B007, M. Koktavá - Prerequisites
- (! M005 Foundations of mathematics )&&! MB101 Mathematics I &&!NOW( MB101 Mathematics I )
Knowledge of high school mathematics. - Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- Informatics (programme FI, B-IN)
- Course objectives
- The course links up high school knowledge with basic mathematical concepts and ideas which a student needs. It mainly deals with fundaments of mathematical logic, set theory, algebra and combinatorics.
- Syllabus
- 1. Basic logical notions (propositions, quantification, mathematical theorems and their proofs).
- 2. Basic properties of integers (division theorem, divisibility, congruences).
- 3. Basic set-theoretical notions (set-theoretical operations including cartesian product).
- 4. Mappings (basic types of mappings, composition of mappings).
- 5. Elements of combinatorics (variations, combinations, inclusion-exclusion principle)
- 6. Cardinal numbers (finite, countable and uncountable sets).
- 7. Relations (relations between sets, composition of relations, relations on a set).
- 8. Ordered sets (order and linear order, special elements, Hasse diagrams, supremum a infimum).
- 9. Equivalences and partitions (relation of equivalence, partition and their mutual relationship).
- 10. Basic algebraic structures (grupoids, semigroups, groups, rings, integral domains, fields).
- 11.Homomorphisms of algebraic structures (basic properties of homomorphisms, kernel and image of a homomorphism).
- Literature
- Balcar, Bohuslav - Štěpánek, Petr. Teorie množin [Balcar, Štěpánek, 1986]. 1. vyd. Praha : Academia, 1986. 412 s. r87U.
- Childs, Lindsay. A Concrete Introduction to Higher Algebra, Springer-Verlag, 1979, 338s. ISBN 0-387-90333-x
- Horák, Pavel. Algebra a teoretická aritmetika. 1 [Horák]. Brno : Rektorát Masarykovy univerzity Brno, 1991. 196 s. ISBN 80-210-0320-0.
- Rosický, Jiří. Algebra. I [Rosický, 1994]. 2. vyd. Brno : Vydavatelství Masarykovy univerzity, 1994. 140 s. ISBN 80-210-0990-.
- J. Rosický, Základy matematiky, učební text
- Assessment methods (in Czech)
- Zkouška je písemná a má dvě části-první písemka(25%) během semestru, druhá(75%) ve zkouškovém období. Budou právě 4 termíny ve zkouškovém - 2 řádné, první opravný a druhý opravný. K připuštění ke zkoušce je třeba získat zápočet ze cvičení. Ten je podmíněn účastí, jsou dovoleny tři neomluvené neúčasti (a tři omluvené).
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://math.muni.cz/~klima/ZakladyM/zakladym-fi-05.html
- Enrolment Statistics (Autumn 2005, recent)
- Permalink: https://is.muni.cz/course/fi/autumn2005/MB005