PV131 Digital Image Processing

Faculty of Informatics
Autumn 2012
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
Teacher(s)
prof. RNDr. Michal Kozubek, Ph.D. (lecturer)
doc. RNDr. Pavel Matula, Ph.D. (seminar tutor)
doc. RNDr. Petr Matula, Ph.D. (seminar tutor)
doc. RNDr. David Svoboda, Ph.D. (seminar tutor)
Mgr. Jan Fikejs (assistant)
Guaranteed by
prof. Ing. Jiří Sochor, CSc.
Department of Visual Computing – Faculty of Informatics
Supplier department: Department of Visual Computing – Faculty of Informatics
Timetable
Wed 8:00–9:50 G101
  • Timetable of Seminar Groups:
PV131/01: Wed 10:00–11:50 B311, P. Matula
PV131/02: Tue 12:00–13:50 B311, P. Matula
PV131/03: Mon 10:00–11:50 B311, D. Svoboda
Prerequisites
Required knowledge: English, foundations of mathematics, linear algebra and calculus.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 37 fields of study the course is directly associated with, display
Course objectives
The aim of this course is to introduce to the students the basics of digital image processing. The students will gain overview about the available techniques and possibilities of this field. They will learn basic image transforms, segmentation algorithms and problems of object measurements. They will be able to perform the basic techniques and apply them in practice. The lecture serves as the base for all those who want to attend to the topic in more details.
Syllabus
  • Acquisition of 2D and 3D image data, process of signal digitization.
  • Properties of the digital image, types of noise.
  • Fourier transform and Nyquist sampling theorem.
  • Convolution, PSF, OTF.
  • Image preprocessing, linear and non-linear filters.
  • Deconvolution.
  • Edge detection.
  • Global and local thresholding, binary image and its modification.
  • Mathematical morphology.
  • Image segmentation.
  • Object description.
  • Object classification.
  • Digital image processing in practice, biomedical applications.
Literature
  • GONZALEZ, Rafael C. and Richard E. WOODS. Digital image processing. 3rd ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2008, xxii, 954. ISBN 9780135052679. info
  • PRATT, William K. Digital image processing : PIKS scientific inside. 4th ed. Hoboken, N.J.: Wiley-interscience, 2007, xix, 782. ISBN 9780471767770. info
  • SONKA, Milan, Václav HLAVÁČ and Roger BOYLE. Image processing analysis and machine vision [2nd ed.]. 2nd ed. Pacific Grove: PWS Publishing, 1999, xxiv, 770. ISBN 0-534-95393-X. info
Teaching methods
Lectures followed by class exercises in a computer room to gain hands-on experience.
Assessment methods
Lectures in Czech, study materials in English. Mandatory practicals (labs) on computers with mandatory homeworks. Written final exam, no materials allowed.
Language of instruction
Czech
Follow-Up Courses
Further Comments
Study Materials
The course is taught annually.
Teacher's information
http://cbia.fi.muni.cz/
The course is also listed under the following terms Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Spring 2020, Spring 2021, Spring 2022, Spring 2023.
  • Enrolment Statistics (Autumn 2012, recent)
  • Permalink: https://is.muni.cz/course/fi/autumn2012/PV131