FI:PV227 GPU Rendering - Course Information
PV227 GPU Rendering
Faculty of InformaticsAutumn 2023
- Extent and Intensity
- 0/2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: k (colloquium).
- Teacher(s)
- RNDr. Jan Byška, Ph.D. (lecturer)
Mgr. Adam Rychlý (lecturer) - Guaranteed by
- RNDr. Jan Byška, Ph.D.
Department of Visual Computing – Faculty of Informatics
Contact Person: RNDr. Jan Byška, Ph.D.
Supplier department: Department of Visual Computing – Faculty of Informatics - Timetable
- Mon 16:00–17:50 B311
- Prerequisites
- PV112 Computer Graphics API
Knowledge of C/C++ programming language. Knowledge of OpenGL in the scope of the course PV112 Computer Graphics API. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 20 student(s).
Current registration and enrolment status: enrolled: 8/20, only registered: 1/20, only registered with preference (fields directly associated with the programme): 1/20 - fields of study / plans the course is directly associated with
- Image Processing and Analysis (programme FI, N-VIZ)
- Applied Informatics (programme FI, N-AP)
- Information Technology Security (eng.) (programme FI, N-IN)
- Information Technology Security (programme FI, N-IN)
- Bioinformatics and systems biology (programme FI, N-UIZD)
- Bioinformatics (programme FI, N-AP)
- Computer Games Development (programme FI, N-VIZ_A)
- Computer Graphics and Visualisation (programme FI, N-VIZ_A)
- Computer Networks and Communications (programme FI, N-PSKB_A)
- Cybersecurity Management (programme FI, N-RSSS_A)
- Discrete algorithms and models (programme FI, N-TEI)
- Formal analysis of computer systems (programme FI, N-TEI)
- Graphic design (programme FI, N-VIZ)
- Graphic Design (programme FI, N-VIZ_A)
- Hardware Systems (programme FI, N-PSKB_A)
- Hardware systems (programme FI, N-PSKB)
- Image Processing and Analysis (programme FI, N-VIZ_A)
- Information security (programme FI, N-PSKB)
- Information Systems (programme FI, N-IN)
- Informatics (eng.) (programme FI, D-IN4)
- Informatics (programme FI, D-IN4)
- Information Security (programme FI, N-PSKB_A)
- Quantum and Other Nonclassical Computational Models (programme FI, N-TEI)
- Parallel and Distributed Systems (programme FI, N-IN)
- Computer graphics and visualisation (programme FI, N-VIZ)
- Computer Graphics (programme FI, N-IN)
- Computer Networks and Communication (programme FI, N-IN)
- Computer Networks and Communications (programme FI, N-PSKB)
- Computer Systems and Technologies (eng.) (programme FI, D-IN4)
- Computer Systems and Technologies (programme FI, D-IN4)
- Computer Systems (programme FI, N-IN)
- Principles of programming languages (programme FI, N-TEI)
- Embedded Systems (eng.) (programme FI, N-IN)
- Embedded Systems (programme FI, N-IN)
- Cybersecurity management (programme FI, N-RSSS)
- Services development management (programme FI, N-RSSS)
- Software Systems Development Management (programme FI, N-RSSS)
- Services Development Management (programme FI, N-RSSS_A)
- Service Science, Management and Engineering (eng.) (programme FI, N-AP)
- Service Science, Management and Engineering (programme FI, N-AP)
- Social Informatics (programme FI, B-AP)
- Software Systems Development Management (programme FI, N-RSSS_A)
- Software Systems (programme FI, N-PSKB_A)
- Software systems (programme FI, N-PSKB)
- Machine learning and artificial intelligence (programme FI, N-UIZD)
- Theoretical Informatics (programme FI, N-IN)
- Teacher of Informatics and IT administrator (programme FI, N-UCI)
- Informatics for secondary school teachers (programme FI, N-UCI) (2)
- Upper Secondary School Teacher Training in Informatics (programme FI, N-SS) (2)
- Artificial Intelligence and Natural Language Processing (programme FI, N-IN)
- Computer Games Development (programme FI, N-VIZ)
- Processing and analysis of large-scale data (programme FI, N-UIZD)
- Image Processing (programme FI, N-AP)
- Natural language processing (programme FI, N-UIZD)
- Course objectives
- This lecture aims to give an overview of the basic GPU programming methods and commonly used techniques with the focus on shader programming. Students: will gain practical knowledge of GPU programming; will understand the workflow of special purpose high-level programming languages; will be able to write parallel programs running on the GPU;
- Learning outcomes
- At the end of the semester, a student should be able to:
- understand and describe possibilities of modern programmable GPUs for rendering 3D scenes;
- read up a and explain function of existing GLSL shaders;
- design and implement own GLSL shaders - Syllabus
- Programmable graphics pipeline.
- Shadows
- Deferred shading
- SSAO, DoF
- HDR, bloom
- Particle systems, compute shaders
- Geometry shaders
- Tessallation shaders
- Microfacets
- Physically Based Rendering, IBL
- Vulkan
- Parallax Occlusion Mapping
- Literature
- recommended literature
- ROST, Randi J. and Bill LICEA-KANE. OpenGL shading language. Edited by Dan Ginsburg. 3rd ed. Upper Saddle River: Addison-Wesley, 2010, xliii, 743. ISBN 9780321637635. info
- not specified
- GPU gems 3. Edited by Hubert Nguyen. Upper Saddle River, NJ: Addison-Wesley, 2007, l, 942. ISBN 9780321515261. info
- GPU gems 2 : programming techniques for high-performance. Edited by Randima Fernando - Matt Pharr. Upper Saddle River: Addison-Wesley, 2005, xlix, 814. ISBN 0321335597. info
- GPU gems : programming techniques, tips, and tricks for real-time graphics. Edited by Randima Fernando, Translated by David Kirk. Boston: Addison-Wesley, 2004, xlv, 765. ISBN 0321228324. info
- ST-LAURENT, Sebastien. Shaders for game programmers and artists. Boston: Thomson Course Technology, 2004, xxiii, 483. ISBN 1592000924. info
- GPU Pro : advanced rendering techniques. Edited by Wolfgang F. Engel. Natick: A K Peters, 2010, xixiii, 71. ISBN 9781568814728. info
- Teaching methods
- Tuition consists of lectures combined with practical examples and exercises.
- Assessment methods
- Completed by colloquium, successful implementation of an easy program during the last lecture. Attendance is compulsory, without homework.
- Language of instruction
- English
- Further Comments
- The course is taught annually.
- Enrolment Statistics (Autumn 2023, recent)
- Permalink: https://is.muni.cz/course/fi/autumn2023/PV227