M028 Numerical Methods I

Faculty of Informatics
Spring 2001
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Recommended Type of Completion: k (colloquium). Other types of completion: z (credit).
Teacher(s)
prof. RNDr. Ivanka Horová, CSc. (lecturer)
doc. Mgr. Jan Koláček, Ph.D. (seminar tutor)
Mgr. Jiří Zelinka, Dr. (seminar tutor)
Guaranteed by
doc. RNDr. Jiří Kaďourek, CSc.
Departments – Faculty of Science
Contact Person: prof. RNDr. Ivanka Horová, CSc.
Timetable
Thu 9:00–10:50 D2
  • Timetable of Seminar Groups:
M028/01: Tue 7:00–7:50 B204, Tue 8:00–8:50 A104, J. Zelinka
M028/02: Mon 9:00–9:50 B204, Mon 10:00–10:50 A104, J. Zelinka
M028/03: Mon 8:00–8:50 B204, Mon 9:00–9:50 A104, J. Koláček
M028/04: Mon 10:00–10:50 B204, Mon 11:00–11:50 A104, J. Koláček
Prerequisites (in Czech)
! U300 Numerické metody && M000 Calculus I && M003 Linear Algebra and Geometry I && M008 Algebra I
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Syllabus
  • Error analysis.
  • Solution of non-linear equations - development of iterative methods, general convergence theorems, Newton's method, secant method, regula falsi method, Steffensen's method, Newton's methods for systems of equations.
  • Roots of polynomials - application of Newton's method, Sturm sequences Bairstow's method.
  • Direct methods for solving systems of linear equations - Gaussian elimination, triangular decomposition of a matrix, Cholesky decomposition, Roundoff-error analysis of Gaussian elimination.
  • Iterative methods for the solution of large systems of linear equations - general procedures for the construction of iterative methods, convergence theorems, Jacobi method, Gauss-Seidel method.
Literature
  • BURDEN, Richard L. and J. Douglas FAIRES. Numerical analysis. 6th ed. Pacific Grove, Calif.: Brooks/Cole, 1997, xiii, 811. ISBN 0-534-95532-0. info
  • HOROVÁ, Ivana. Numerické metody. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 98 s. info
  • HOROVÁ, Ivana. Numerické metody. 2. přeprac. vyd. Brno: Rektorát UJEP, 1984, 103 s. info
  • BULIRSCH, R. and J. STOER. Introduction to Numerical Analysis. Springer-Verlag, 1980. info
Language of instruction
Czech
Further Comments
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 1996, Spring 1997, Spring 1998, Spring 1999, Spring 2000, Autumn 2001.
  • Enrolment Statistics (Spring 2001, recent)
  • Permalink: https://is.muni.cz/course/fi/spring2001/M028