PV056 Knowledge Discovery in Databases

Faculty of Informatics
Spring 2004
Extent and Intensity
2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
Teacher(s)
doc. RNDr. Lubomír Popelínský, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: doc. RNDr. Lubomír Popelínský, Ph.D.
Timetable
Mon 16:00–17:50 B011
Prerequisites (in Czech)
! P056 Knowledge discovery in DB
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 8 fields of study the course is directly associated with, display
Course objectives (in Czech)
Přehled základních metod, algoritmů a systémů pro vyhledávání znalostí v databázích. Součástí předmětu je projekt.
Syllabus
  • Knowledge, association, dependency in databases. Interestingness relation. Knowledge discovery in databases(KDD). Data mining.
  • Typical KDD tasks: clustering, classification, dependency discovery, deviation detection.
  • Basic algorithms of machine learning.
  • Preprocessing.
  • Association rules
  • KDD systems MineSet and Kepler.
  • DBMS extension to support KDD. KESO Project.
  • Inductive query languages. DBLearn.
  • Knowledge discovery in RDB, OODB, geographic data and WWW and text.
  • Data warehousing, OLAP.
Literature
  • Advances in knowledge discovery and data mining. Edited by Usama M. Fayyad. Menlo Park: AAAI Press, 1996, xiv, 611. ISBN 0262560976. info
Assessment methods (in Czech)
Nutnou podmínkou absolvování je projekt.
Language of instruction
Czech
Further Comments
The course is taught annually.
Listed among pre-requisites of other courses
Teacher's information
http://www.fi.muni.cz/usr/popelinsky/lectures/kdd/
The course is also listed under the following terms Spring 2003, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, Spring 2018, Spring 2019, Spring 2020, Spring 2021, Spring 2022, Spring 2023, Spring 2024, Spring 2025.
  • Enrolment Statistics (Spring 2004, recent)
  • Permalink: https://is.muni.cz/course/fi/spring2004/PV056