FI:DPGZO Graphics & Image Processing - Course Information
DPGZO Computer Graphics and Image Processing
Faculty of InformaticsSpring 2010
- Extent and Intensity
- 3/0. 3 credit(s). Type of Completion: z (credit).
- Teacher(s)
- prof. RNDr. Michal Kozubek, Ph.D. (lecturer)
prof. Ing. Ivo Serba, CSc. (lecturer)
prof. Ing. Jiří Sochor, CSc. (lecturer)
Ing. Dana Komárková (lecturer) - Guaranteed by
- prof. RNDr. Antonín Kučera, Ph.D.
Faculty of Informatics - Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 10 fields of study the course is directly associated with, display
- Course objectives
- The student will gain a deeper knowledge about a chosen field of computer graphics or image processing while working on one of the more complex projects solved in the Laboratory of Human-Computer Interactions or Laboratory of Optical Microscopy, respectively, and will apply this knowledge during the work on a team R&D project. This will strengthen the student's capability of analyzing real-world problems in the given field, finding suitable solutions and working in a scientific team.
- Syllabus
- Computer graphics: Efficient mathematical methods and data structures for fast visualization, collision detection in real time (with object distance and intersection depth determination), filtering of position and orientation of data, interpolation and extrapolation of rotations and various specific problems. Principles together with integrated tasks are tested in three basic applications: general manipulation methods in virtual environment, visualization of binding forces between molecules and haptic visualization of 2D and 3D objects.
- Image processing: Acquisition and evaluation of images of tissues, cells, cell nuclei, chromosomes and genes, usually for the purpose of determination of spatial arrangement of genetic material inside cell nucleus or tracking of the movement of selected cellular components in time. Especially the following methods are employed for this purpose: image filtering, image segmentation, image or object registration and object measurements on a digital grid.
- Literature
- GONZALEZ, Rafael C. and Richard E. WOODS. Digital image processing. 3rd ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2008, xxii, 954. ISBN 9780135052679. info
- PRATT, William K. Digital image processing : PIKS scientific inside. 4th ed. Hoboken, N.J.: Wiley-interscience, 2007, xix, 782. ISBN 9780471767770. info
- LANGETEPE, Elmar and Gabriel ZACHMANN. Geometric data structures for computer graphics. Wellesley, Mass.: A K Peters, 2006, xiii, 339. ISBN 1568812353. info
- WATT, Alan H. 3D Computer Graphics. 3rd ed. Harlow: Addison-Wesley, 2000, xxii, 570. ISBN 0-201-39855-9. info
- SALOMON, David. Computer graphics and geometric modeling. New York: Springer, 1999, xviii, 851. ISBN 0387986820. info
- ŠONKA, Milan, Václav HLAVÁČ and Roger BOYLE. Image processing analysis and machine vision. 2nd ed. Pacific Grove: PWS Publishing, 1999, xxiv, 770. ISBN 053495393X. info
- Teaching methods
- Consultations and own research and presentation activities based on individual agreement with the supervisor. Students are engaged into the work on large R&D projects with an effort of joining international research infrastructures, such as networks of excellence or other forms of EU framework programmes. Large emphasis is put onto a team work.
- Assessment methods
- Communication with supervisor in Czech or English, study materials in English. Individual work, final presentation on a lab seminar. This course can be taken repeatedly.
- Language of instruction
- Czech
- Enrolment Statistics (Spring 2010, recent)
- Permalink: https://is.muni.cz/course/fi/spring2010/DPGZO