IA159 Formal Verification Methods

Faculty of Informatics
Spring 2011
Extent and Intensity
2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jan Strejček, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Jan Strejček, Ph.D.
Timetable
Tue 8:00–9:50 A107
Prerequisites
IA006 Automata theory
It is recommended to attend courses IA040 and IV113 before registering this course.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 21 fields of study the course is directly associated with, display
Course objectives
At the end of this course, students should be able to: understand and explain principles of basic formal verification methods, namely model checking methods, reachability analysis, abstract interpretations, and theorem proving;
make reasoned decisions about suitability of various methods for verification of specific systems;
Syllabus
  • Overview of formal verification methods.
  • Software testing.
  • Deductive verification methods (theorem proving).
  • LTL model checking of finite and infinite-state systems.
  • State explosion problem, partial order reduction, abstraction.
  • Counter-example guided abstraction refinement.
  • Static analysis, abstract interpretation.
  • Verification tools.
Literature
  • PELED, Doron A. Software reliability methods. New York: Springer, 2001, xix, 331. ISBN 0387951067. info
  • GRUMBERG, Orna, Doron A. PELED and E. M. CLARKE. Model checking. Cambridge: MIT Press, 1999, xiv, 314. ISBN 0262032708. info
  • Model-Based Testing, http://www.goldpractices.com/practices/mbt/
Teaching methods
lectures
Assessment methods
oral exam
Language of instruction
English
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Spring 2008, Spring 2009, Spring 2010, Spring 2012, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, Spring 2018, Spring 2019, Spring 2020, Spring 2021, Spring 2022, Spring 2023, Autumn 2023, Autumn 2024.
  • Enrolment Statistics (Spring 2011, recent)
  • Permalink: https://is.muni.cz/course/fi/spring2011/IA159