MB104 Mathematics IV

Faculty of Informatics
Spring 2011
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
Mgr. Michal Bulant, Ph.D. (lecturer)
RNDr. Jana Komárková, Ph.D. (seminar tutor)
Mgr. Lenka Mžourková Macálková (seminar tutor)
Mgr. et Mgr. Alena Novotná (seminar tutor)
Mgr. Petr Pupík (seminar tutor)
Mgr. Milan Werl, Ph.D. (seminar tutor)
Mgr. Silvie Zlatošová, Ph.D. (seminar tutor)
RNDr. Jan Vondra, Ph.D. (assistant)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Timetable
Tue 16:00–17:50 D1, Wed 14:00–15:50 D1
  • Timetable of Seminar Groups:
MB104/01: Tue 18:00–19:50 G125, P. Pupík
MB104/02: Thu 8:00–9:50 G125, S. Zlatošová
MB104/03: Thu 10:00–11:50 G125, S. Zlatošová
MB104/04: Mon 8:00–9:50 G125, M. Werl
MB104/05: Mon 10:00–11:50 G125, M. Werl
MB104/06: Fri 8:00–9:50 G124, L. Mžourková Macálková
MB104/07: Fri 10:00–11:50 G124, L. Mžourková Macálková
MB104/08: Tue 12:00–13:50 G124, J. Komárková
MB104/09: Wed 12:00–13:50 G124, J. Komárková
MB104/10: Wed 8:00–9:50 G125, A. Novotná
MB104/11: Wed 10:00–11:50 G125, A. Novotná
MB104/12: Mon 14:00–15:50 G101, S. Zlatošová
MB104/13: Thu 18:00–19:50 G123, L. Mžourková Macálková
MB104/14: Mon 12:00–13:50 G123, J. Komárková
MB104/15: Fri 8:00–9:50 M3,01023, P. Pupík
MB104/16: Mon 12:00–13:50 G101, M. Werl
Prerequisites
Recommended: Calculus and linear algebra.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 19 fields of study the course is directly associated with, display
Course objectives
The last part of the block Mathematics I-IV, for the brief content of the whole block see Mathematics I MB101. The main objectives can be summarized as follows: to understand basic concepts and tools of Algebra; to understand basic concepts and tools of Probability and Statistics.
Syllabus
  • Abstract mathematical structures: groups, algebras, lattices, rings, fields, divisibility, prime numbers decompositions, Euler theorem. Introduction to probability theory and statistics: Probality functins and their properties, conditional probability, Bayes formula, random quantities, mean value, median, quantil, variance, sequences of random quantities, law of large numbers, examples of discrete and continuous distributions, selected applications.
Literature
  • ROSICKÝ, J. Algebra, grupy a okruhy. 3rd ed. Brno: Masarykova univerzita, 2000, 140 pp. ISBN 80-210-2303-1. info
  • BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Popisná statistika. Třetí doplněné vydání. Brno: Masarykova univerzita, 1998, 48 stran. ISBN 8021018313. info
  • BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Teorie pravděpodobnosti a matematická statistika : sbírka příkladů [Budíková, 1996]. 1. vyd. Brno: Masarykova univerzita, 1996, 131 s. ISBN 80-210-1329-X. info
  • ZVÁRA, Karel and Josef ŠTĚPÁN. Pravděpodobnost a matematická statistika. Vyd. 3. Praha: Matfyzpress, 2002, 230 s. ISBN 80-85863-93-6. info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB104!
Teaching methods
There are theoretical lectures, practical demonstration of the computational aspects, and standard tutorial accompanied by homework assessment.
Assessment methods
Two hours of lectures, two hours of presentations of typical problem solutions. Homeworks supported by tutorials. Written test exam.
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
The course is also listed under the following terms Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2012, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, Spring 2018, Spring 2019, Spring 2020.
  • Enrolment Statistics (Spring 2011, recent)
  • Permalink: https://is.muni.cz/course/fi/spring2011/MB104