FI:IA008 Computational Logic - Course Information
IA008 Computational Logic
Faculty of InformaticsSpring 2012
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Lubomír Popelínský, Ph.D. (lecturer)
Mgr. Eva Mráková, Ph.D. (seminar tutor)
RNDr. Mgr. Jana Dražanová, Ph.D. (seminar tutor)
Mgr. Ondřej Nečas (assistant)
Mgr. Peter Nosáľ (assistant) - Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: doc. RNDr. Lubomír Popelínský, Ph.D.
Supplier department: Department of Computer Science – Faculty of Informatics - Timetable
- Mon 16:00–17:50 A107
- Timetable of Seminar Groups:
IA008/02: Thu 12:00–13:50 B204, E. Mráková
IA008/03: Wed 12:00–13:50 G123, J. Dražanová
IA008/04: Thu 14:00–15:50 G123, J. Dražanová - Prerequisites (in Czech)
- ! I008 Computational Logic
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 111 student(s).
Current registration and enrolment status: enrolled: 0/111, only registered: 0/111, only registered with preference (fields directly associated with the programme): 0/111 - fields of study / plans the course is directly associated with
- there are 19 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be familiar with main research and applications in computational logic; They will be able to use automatic provers for predicate logic and also for its extensions; They will be familiar with, and able to use, methods for inductive inference in those logics;
- Syllabus
- Introduction to propositional and predicate logic.
- Deduction: Resolution; Logic programming; Prolog, extralogical features, metainterpreters; Definite clause grammars; Deductive databases; Tableau proofs. Theorem proving in modal logic.
- Induction: Basics of inductive logic programming; Model inference problem; Assumption-based reasoning and learning; Learning frequent patterns.
- Logic for natural language processing.
- Knowledge representation and reasoning: Non-classical logic; Knowledge-based systems; Non-monotonic reasoning; Semantic web.
- Literature
- NERODE, Anil and Richard A. SHORE. Logic for applications. New York: Springer-Verlag, 1993, xvii, 365. ISBN 0387941290. info
- FITTING, Melvin. First order logic and automated theorem proving. 2nd ed. New York: Springer, 1996, xvi, 326. ISBN 0387945938. info
- NIENHUYS-CHENG, Shan-Hwei and Ronald de WOLF. Foundations of inductive logic programming. Berlin: Springer, 1997, xvii, 404. ISBN 3540629270. info
- Teaching methods
- lectures, exercises.
- Assessment methods
- A midterm written exam and a written final exam.
- Language of instruction
- English
- Further Comments
- Study Materials
The course is taught annually. - Teacher's information
- http://www.fi.muni.cz/~popel/lectures/complog/
- Enrolment Statistics (Spring 2012, recent)
- Permalink: https://is.muni.cz/course/fi/spring2012/IA008