PV056 Machine Learning and Data Mining

Faculty of Informatics
Spring 2013
Extent and Intensity
2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
Teacher(s)
doc. RNDr. Lubomír Popelínský, Ph.D. (lecturer)
Mgr. Juraj Jurčo (assistant)
RNDr. Mgr. Jaroslav Bayer (assistant)
RNDr. Hana Bydžovská, Ph.D. (assistant)
RNDr. Jan Géryk, Ph.D. (assistant)
Guaranteed by
prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: doc. RNDr. Lubomír Popelínský, Ph.D.
Supplier department: Department of Computer Science – Faculty of Informatics
Timetable
Wed 12:00–13:50 B410
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
At the end of the course students should be able to use machine learning and data mining methods. They will be able to built tools for mining in data that employ machine learning methods.
Syllabus
  • Introduction to the theory of knowledge discovery in databases. Survey of the most important methods, algorithms and systems. A project is as a part of the course.
  • Knowledge discovery in databases. Data mining.
  • Basic algorithms of machine learning.
  • Preprocessing. Active learning.
  • Mining frequent patterns and association rules.
  • Inductive query languages.
  • PMML
  • Data visualization, visual analytics
  • Text mining, mining in spatio-temporal dat, web mining.
  • Data mining and life sciences.
Literature
  • BERKA, Petr. Dobývání znalostí z databází. Vyd. 1. Praha: Academia, 2003, 366 s. ISBN 8020010629. info
  • Relational data mining. Edited by Sašo Džeroski - Nada Lavrač. Berlin: Springer, 2001, xix, 398. ISBN 3540422897. info
  • HAN, Jiawei and Micheline KAMBER. Data mining : concepts and techniques. 2nd ed. San Francisco, CA: Morgan Kaufmann, 2006, xxviii, 77. ISBN 1558609016. URL info
Teaching methods
Lectures, exercises, a project.
Assessment methods
Written and oral exam. A defense of a project is as a part of the exam.
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
Teacher's information
http://www.fi.muni.cz/usr/popelinsky/lectures/kdd/
The course is also listed under the following terms Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, Spring 2014, Spring 2015, Spring 2016, Spring 2017, Spring 2018, Spring 2019, Spring 2020, Spring 2021, Spring 2022, Spring 2023, Spring 2024, Spring 2025.
  • Enrolment Statistics (Spring 2013, recent)
  • Permalink: https://is.muni.cz/course/fi/spring2013/PV056