FI:PV211 Information Retrieval - Course Information
PV211 Introduction to Information Retrieval
Faculty of InformaticsSpring 2014
- Extent and Intensity
- 2/1/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: k (colloquium). Other types of completion: z (credit).
- Teacher(s)
- doc. RNDr. Petr Sojka, Ph.D. (lecturer)
RNDr. Martin Líška (seminar tutor)
RNDr. Tomáš Effenberger, Ph.D. (assistant) - Guaranteed by
- doc. RNDr. Petr Matula, Ph.D.
Department of Visual Computing – Faculty of Informatics
Contact Person: doc. RNDr. Petr Sojka, Ph.D.
Supplier department: Department of Visual Computing – Faculty of Informatics - Timetable
- Thu 16:00–17:50 D3
- Timetable of Seminar Groups:
PV211/01: each even Thursday 18:00–19:50 D3, M. Líška
PV211/02: each odd Thursday 18:00–19:50 D3, M. Líška - Prerequisites
- Interest and motivation to retrieve information about information retrieval.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 35 fields of study the course is directly associated with, display
- Course objectives
- Main objectives can be summarized as follows: - to understand basics of principles of information retrieval based on (XML) text processing and natural language understanding; - to understand principles and algorithms of NLP-based text preprocessing, text semantic filtering and classification, and web searching needed for textual information systems and digital library design.
- Syllabus
- Boolean retrieval; The term vocabulary and postings lists
- Dictionaries and tolerant retrieval
- Index construction, Index compression
- Scoring, term weighting and the vector space model
- Computing scores in a complete search system
- Evaluation in information retrieval
- Relevance feedback and query expansion
- XML retrieval
- Probabilistic information retrieval
- Language models for information retrieval
- Text classification with vector space model
- Machine learning and information retrieval
- Hierarchical clustering
- Matrix decompositions and latent semantic indexing
- Web search basics
- Web crawling and indexes
- Link analysis, PageRank
- Literature
- required literature
- MANNING, Christopher D., Prabhakar RAGHAVAN and Hinrich SCHÜTZE. Introduction to information retrieval. 1st pub. Cambridge: Cambridge University Press, 2008, xxi, 482. ISBN 9780521865715. info
- recommended literature
- http://informationretrieval.com/
- Teaching methods (in Czech)
- Kontaktní výuka bude kromě klasických přednášek obsahovat podporu autonomního učení studentů (výuková videa ve stylu Khan Academy, MOOC) -- tzv. `flipped learning'.
- Assessment methods (in Czech)
- Bodový hodnotící systém motivující studenta pro průběžnou autonomní práci v semestru (prémiové body). Závěrečné kolokvium -- písemný test testující získané znalosti a dovednosti při vyhledávání znalostí.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually. - Teacher's information
- http://www.fi.muni.cz/~sojka/PV211/
- Enrolment Statistics (Spring 2014, recent)
- Permalink: https://is.muni.cz/course/fi/spring2014/PV211