IB031 Introduction to Machine Learning

Faculty of Informatics
Spring 2015
Extent and Intensity
2/0/1. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Tomáš Brázdil, Ph.D. (lecturer)
doc. RNDr. Lubomír Popelínský, Ph.D. (lecturer)
RNDr. Karel Vaculík, Ph.D. (assistant)
Guaranteed by
prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Supplier department: Department of Computer Science – Faculty of Informatics
Timetable
Tue 10:00–11:50 C511
Prerequisites (in Czech)
Doporučeno: znalosti v rozsahu kursů MB102 a MB103.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives (in Czech)
Student se bude po absolvování předmětu schopen samostatně orientovat v základních metodách a přístupech z oblasti strojového učení. Bude mít základní představu o fundamentálních teoretických modelech a jejich klíčových praktických aplikacích. Bude mít přehled o souvislostech strojového učení s dalšími oblastmi informatiky a matematiky, zejména s matematickou statistikou, logikou, umělou inteligencí a optimalizací. Bude umět implementovat aplikaci metod strojového učení.
Syllabus (in Czech)
  • Základy strojového učení: klasifikace a regrese, shluková analýza, učení s učitelem a bez učitele, ilustrační příklady
  • Rozhodovací stromy: učení rozhodovacích stromů, učení pravidel
  • Logika a strojové učení: specializace, generalizace, logický důsledek
  • Ověřování výsledku učení: učící a testovací množina, přeučení, krížová validace, matice zmatenosti, učící krivka, ROC křivka; sampling, normalizace
  • Pravděpodobnostní model: Bayesovo pravidlo, MAP, MLE, naivní Bayes; jemný úvod do Bayesovských sítí
  • Lineární regrese (klasifikace), metoda nejmenších čtverců, souvislost s MLE, regresní stromy
  • Kernelové metody: SVM, kernelová transformace, kernelový trik
  • Neuronové sítě: vícevrstvá síť, zpětná propagace, nelineární regrese, bias vs. variance, regularizace
  • Líné učení: metoda k nejbližších sousedů. Shluková analýza: metoda k-středů, hierarchické shlukování, EM
  • Praktické strojové učení. Předzpracování dat: výběr atributů, konstrukce nových atributů, metody vzorkování. Ensemble methods. Bagging. Boosting. Nástroje pro strojové učení. Weka
  • Ukázka pokročilejších metod strojového učení: Induktivní logické programování, hluboké učení.
Literature
    recommended literature
  • Simon Rogers, Mark Girolami. A First Course in Machine Learning . Chapman and Hall, 2011.
  • BERKA, Petr. Dobývání znalostí z databází. Vyd. 1. Praha: Academia, 2003, 366 s. ISBN 8020010629. info
    not specified
  • Pattern recognition and machine learning. Edited by Christopher M. Bishop. New York: Springer, 2006, xx, 738. ISBN 0387310738. info
  • MITCHELL, Tom M. Machine learning. Boston: McGraw-Hill, 1997, xv, 414. ISBN 0070428077. info
Bookmarks
https://is.muni.cz/ln/tag/FI:IB031!
Assessment methods
Intrasemestral exam, project, final exam.
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Spring 2016, Spring 2017, Spring 2018, Spring 2019, Spring 2020, Spring 2021, Spring 2022, Spring 2023, Spring 2024, Spring 2025.
  • Enrolment Statistics (Spring 2015, recent)
  • Permalink: https://is.muni.cz/course/fi/spring2015/IB031