FI:MV011 Statistics I - Course Information
MV011 Statistics I
Faculty of InformaticsSpring 2019
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. Mgr. Jan Koláček, Ph.D. (lecturer)
Mgr. Monika Filová (seminar tutor)
Mgr. Eva Janoušková, Ph.D. (seminar tutor)
Mgr. et Mgr. Daniela Kuruczová, Ph.D. (seminar tutor)
Mgr. Stanislav Zámečník (seminar tutor) - Guaranteed by
- doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Faculty of Informatics
Supplier department: Faculty of Science - Timetable
- Tue 19. 2. to Tue 14. 5. Tue 12:00–13:50 D2
- Timetable of Seminar Groups:
MV011/01: Thu 21. 2. to Thu 16. 5. Thu 14:00–15:50 A215, D. Kuruczová
MV011/02: Thu 21. 2. to Thu 16. 5. Thu 12:00–13:50 A215, D. Kuruczová
MV011/03: Thu 21. 2. to Thu 16. 5. Thu 8:00–9:50 A320, M. Filová
MV011/04: Thu 21. 2. to Thu 16. 5. Thu 10:00–11:50 A320, M. Filová
MV011/05: Thu 21. 2. to Thu 16. 5. Thu 16:00–17:50 B204, S. Zámečník - Prerequisites
- Prerequisites: calculus in one and several variables, basics of linear algebra.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 37 fields of study the course is directly associated with, display
- Course objectives
- Upon completing this course, students will be able to perform basic computer aided statistical data set analysis in R language, resulting in tables, graphs and numerical characteristics; will understand basic probability concepts; will be able to solve probability tasks related to explained theory (in some cases using statistical software); will be able to generate realizations of selected types random variables using statistical software; has basic knowledge of statistical hypothesis testing, will be able carry out tests in statistical software and interpret the results.
- Syllabus
- Introduction to the probability theory.
- Random variables and vectors. Probability distribution and distribution function.
- Discrete and continuous random variables and vectors. Typical distribution laws. Simultaneous and marginal distributions.
- Stochastic independence of random variables and vectors. The sequence of independent trials.
- Quantiles, expectation, variance, covariance, correlation coeficient and their properties.
- Weak law of large number and central limit theorem.
- Data files, empirical characteristics and graphs, numerical characteristics. Descriptive statistics in R language.
- Random sample, point and interval estimators.
- Basics of testing hypothesis. Testing hypothesis in R language.
- Regression analysis in R language.
- Literature
- recommended literature
- FORBELSKÁ, Marie and Jan KOLÁČEK. Pravděpodobnost a statistika I. 1. vyd. Brno: Masarykova univerzita, 2013. Elportál. ISBN 978-80-210-6710-3. url info
- FORBELSKÁ, Marie and Jan KOLÁČEK. Pravděpodobnost a statistika II. 1. vyd. Brno: Masarykova univerzita, 2013. Elportál. ISBN 978-80-210-6711-0. url info
- not specified
- BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Teorie pravděpodobnosti a matematická statistika. Sbírka příkladů. (Probability Theory and Mathematical Statistics. Collection of Tasks.). 3rd ed. Brno: Masarykova univerzita, 2004, 127 pp. ISBN 80-210-3313-4. info
- BUDÍKOVÁ, Marie, Maria KRÁLOVÁ and Bohumil MAROŠ. Průvodce základními statistickými metodami (Guide to basic statistical methods). vydání první. Praha: Grada Publishing, a.s., 2010, 272 pp. edice Expert. ISBN 978-80-247-3243-5. URL info
- BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Popisná statistika (Descriptive Statistics). 3., doplněné vyd. Brno: Masarykova univerzita, 1998, 52 pp. ISBN 80-210-1831-3. info
- ANDĚL, Jiří. Statistické metody. 1. vyd. Praha: Matfyzpress, 1993, 246 s. info
- Teaching methods
- Lectures, Exercises
- Assessment methods
- The weekly class schedule consists of 2 hour lecture and 2 hours of class exercises. Throughout semester, students fill in question sets and solve practical task in R. The examination is written: theory and examples. Final grade: A ... 46 - 50 points B ... 41 - 45 points C ... 36 - 40 points D ... 31 - 35 points E ... 26 - 30 points F ... 0 - 25 points
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
- Enrolment Statistics (Spring 2019, recent)
- Permalink: https://is.muni.cz/course/fi/spring2019/MV011