FI:MV013 Statistics - Informace o předmětu
MV013 Statistics for Computer Science
Fakulta informatikyjaro 2019
- Rozsah
- 2/2/0. 4 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
- Vyučující
- doc. PaedDr. RNDr. Stanislav Katina, Ph.D. (přednášející)
Mgr. Markéta Janošová (cvičící) - Garance
- doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Fakulta informatiky
Dodavatelské pracoviště: Přírodovědecká fakulta - Rozvrh
- Út 19. 2. až Út 14. 5. Út 10:00–11:50 B204
- Rozvrh seminárních/paralelních skupin:
MV013/02: St 14:00–15:50 A215, M. Janošová - Předpoklady
- The knowledge of basic calculus, linear algebra and theory of probability.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 22 mateřských oborů, zobrazit
- Cíle předmětu
- The main goal of the course is to become familiar with some basic principles of data science and statistics, with writing about numbers (presenting data using basic characteristics and statistical graphics), some basic principles of likelihood and statistical inference; to understand basic probabilistic and statistical models; to understand and explain basic principles of parametric statistical inference for continuous and categorical data base on Wald principle, likelihood and score principle connecting the statistical theory with implementation in R, geometry, and statistical graphics; to implement these techniques to R language; to be able to apply them to real data.
- Výstupy z učení
- Student will be able:
- to understand principles of likelihood and statistical inference for continuous and discrete data;
- to select suitable probabilistic and statistical model for continous and discrete data;
- to use suitable basic characteristics and statistical graphics for continous and discrete data;
- to build up and explain suitable statistical test for continuous and discrete data;
- to apply statistical inference on real continuous and discrete data;
- to apply simple linear regression model on real continuous data;
- to implement statistical methods of continuous and discrete data to R. - Osnova
- Why computer scientists should study statistics?
- Computer science related problems with analysed data
- Why the thought study based on data is useful?
- Data types
- Sampling
- Parametric probabilistic and statistical models
- Likelihood principle and parameter estimation using numerical methods
- Descriptive statistics (tables, listings, figures)
- From description to statistical inference
- Hypothesis testing and parameters of a model
- Goodness-of-fit tests
- Testing hypotheses about one-sample
- Testing hypotheses about two-samples
- Testing hypotheses about more than two sample problems including ANOVA
- Simple linear regression model
- Interpretation of statistical findings
- Literatura
- CASELLA, George a Roger L. BERGER. Statistical inference. 2nd ed. Pacific Grove, Calif.: Duxbury, 2002, xxviii, 66. ISBN 0534243126. info
- Výukové metody
- Lectures, practicals.
- Metody hodnocení
- Homework (project), oral exam.
- Vyučovací jazyk
- Angličtina
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
- Statistika zápisu (jaro 2019, nejnovější)
- Permalink: https://is.muni.cz/predmet/fi/jaro2019/MV013