FI:IA082 Quantum information processing - Course Information
IA082 Physical concepts of quantum information processing
Faculty of InformaticsSpring 2022
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- RNDr. Daniel Reitzner, PhD. (lecturer)
doc. Mgr. Mário Ziman, Ph.D. (lecturer) - Guaranteed by
- doc. Mgr. Mário Ziman, Ph.D.
Department of Computer Systems and Communications – Faculty of Informatics
Supplier department: Department of Computer Systems and Communications – Faculty of Informatics - Timetable
- Tue 15. 2. to Tue 10. 5. Tue 18:00–19:50 B411
- Prerequisites (in Czech)
- PV275 Intro to Quantum Programming || SOUHLAS
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 53 fields of study the course is directly associated with, display
- Course objectives
- Introduction to quantum physics and quantum information theory.
- Learning outcomes
- After this course students should:
understand basic principles of quantum physics;
apply the learned concepts in the subsequent study of quantum information theory;
self-study quantum theory books. - Syllabus
- 1. Security and computation with photons - photon's polarization and polarizers, Vernam cipher, quantum key "distribution" protocol B92, polarizing beam-splitter, √NOT logic gate,
- 2. Quantum interference and superposition - Mach-Zender interferometer, concept of quantum state, quantum probabilities and amplitudes, Hilbert space and operators,
- 3. Measuring quantum properties - description of quantum measurement devices (POVM), tomography of polarization, uncertainty relations, no information without disturbance
- 4. Hydrogen atom - emission spectrum, Bohr's model, position and momentum, quantum solution, Zeeman effects, spin of electron,
- 5. Schrodinger equation - time and evolution, unitary operators, energy conservation and system's Hamiltonian,
- 6. Quantum bit - two-level quantum system (polarization and spin-1/2), Stern-Gerlach experiments, Bloch sphere, orthogonality and information, no-cloning theorem, quantum NOT gate, qubit implementations
- 7. Quantum sources and randomness - mixed states, quantum commpression, von Neumann entropy, capacity of noiseless quantum channel, randomness sources, min-entropy
- 8. Einstein-Podolski-Rosen paradox - composite quantum systems, tensor product, quantum steering, EPR paradox, local hidden variable model, CHSH inequalities, experiments and loopholes
- 9. Quantum one-time pad protocols - one-time pad, super-dense coding and teleportation
- 10. Quantum entanglement - correlated and separable states, definition of entanglement, entanglement distilation,
- 11. Quantum cryptography - QKD protocols BB84, E91, no-quantum bit commitment theorem, quantum secret sharing protocols,
- 12. Elementary particles - fermions and bosons and tensor products, standard model, Higg's boson
- Literature
- ZIMAN, Mário. Vybrané kapitoly z kvantové mechaniky (Selected topics from quantum mechanics). 2004. URL info
- Teaching methods
- Lectures
- Assessment methods
- Homeworks and written exam, usage of materials and notes is allowed, optional oral exam
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually. - Teacher's information
- http://quantum.physics.sk/rcqi/index.php?x=fimu_qm
- Enrolment Statistics (Spring 2022, recent)
- Permalink: https://is.muni.cz/course/fi/spring2022/IA082