BOFO0232p Physical Optics II - lecture

Faculty of Medicine
spring 2025
Extent and Intensity
2/0/0. 1 credit(s). Type of Completion: k (colloquium).
In-person direct teaching
Teacher(s)
prof. RNDr. Ivan Ohlídal, DrSc. (lecturer)
Guaranteed by
prof. RNDr. Ivan Ohlídal, DrSc.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: Lenka Herníková
Supplier department: Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Prerequisites
BOFO0131p Physical Optics I-lec.
Students must pass the lecture BOFO0131p - Physical Optics I before visiting this lecture.
Course Enrolment Limitations
The course is only offered to the students of the study fields the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
This lecture is the continuing course for the foregoing lecture BOFO0131p - Physical Optics I. It performs an extension of pieces of knowledge obtained by students in the lecture BOFO0131p. The aims of this lecture are as follows:
1) Education of the students in understanding new pieces of knowledge of Physical Optics presented in this lecture by means of simple mathematical procedures and formulae, i.e. educating them on the basis of quantitative approaches.
2) Using presentation of suitable experiments to understand a connection between theoretical conclusions achieved and experimental practice.
3) Explanation of employing the pieces of knowledge obtained within this lecture in practical optometry.
Learning outcomes
This lecture is the continuing course for the foregoing lecture BOFO0131p - Physical Optics I. It performs an extension of pieces of knowledge obtained by students in the lecture BOFO0131p.
Syllabus
  • 1) Diffraction of light: Fraunhofer and Fresnel diffraction.
  • 2) Examples of light diffraction: diffraction on a sharp edge, pinholes of various simple forms, circular piece and linear grating.
  • 3) Understanding of a resolution of simple instruments: resolution of microscope and telescope.
  • 4) Principles of elementary theory of coherence: temporal and spatial coherence.
  • 5) Influence of light coherence on interference and diffraction.
  • 6) Principles of propagation of light in non-absorbing anisotropic media, birefringence.
  • 7) Bases of optics of non-absorbing uniaxial anisotropic crystals: ordinary and extraordinary waves and their properties, Snell's law for the plane boundary between non-absorbing isotropic and non-absorbing anisotropic media.
  • 8) Application of non-absorbing uniaxial crystals in practice: polarization prisms (Nicol's prism, Glan-Thompson's prism), compensators as elements influencing polarization states of light waves (Babinet's nad Babinet-Soleil's compensators).
  • 9) Artificial birefringence.
  • 10) Optical activity, phenomenological description of optical activity.
  • 11) Interference of polarized waves by means of uniaxial crystal plates, principles of photoelasticimetry.
Literature
  • Saleh, B.E.A. and Teich, M.C.: Fundamentals of Photonics. New York: Wiley, 1991. 966 p.
  • Klein, M.V.: Optics. New York: Wiley, 1970. 647 p.
  • Hecht, E. and Zajac, A.: Optics. Massachusetts: Addison-Wesley, 1974. 555 p.
  • Ditchburn, R.W.: Light. London: Blackie, 1965. 632 p.
  • Fuka, J. and Havelka, B.: Optika. Praha : SPN, 1961. 846 s.
  • Hlávka Jan, Šikula a kolektiv: Fyzika I., Praha 1987.
  • Saleh, B.E.A. and Teich, M.C.: Základy fotoniky. 1. - 4. svazek. Praha: MATFYZPRESS, 1996. 1055 s.
  • Svobodová a kol.:Přehled středoškolské fyziky, 1996.
  • SVOBODA, Emanuel. Přehled středoškolské fyziky. 2. přeprac. vyd. Praha: Prometheus, 1996, 497 s. ISBN 80-7196-006-3. info
  • KUBĚNA, Josef. Úvod do optiky. Brno: Masarykova univerzita, 1994, 181 s. ISBN 8021008350. info
Teaching methods
lecture
Assessment methods
written test (minimu of 40 points)
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
Information on the extent and intensity of the course: 30.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, Spring 2018, spring 2019, spring 2020, spring 2021, spring 2022, spring 2023, spring 2024.
  • Enrolment Statistics (spring 2025, recent)
  • Permalink: https://is.muni.cz/course/med/spring2025/BOFO0232p