BOGO0121p Geometric Optics I - lecture

Faculty of Medicine
Autumn 2017
Extent and Intensity
2/0/0. 0 credit(s). Type of Completion: -.
Teacher(s)
prof. Ing. Jozef Kaiser, Ph.D. (lecturer), doc. MUDr. Svatopluk Synek, CSc. (deputy)
Ing. Jan Novotný, Ph.D. (lecturer)
Guaranteed by
doc. MUDr. Svatopluk Synek, CSc.
Department of Optometry and Orthoptics – Departments of Non-medical Branches – Faculty of Medicine
Contact Person: Zdeňka Homolová
Supplier department: Department of Optometry and Orthoptics – Departments of Non-medical Branches – Faculty of Medicine
Timetable
Thu 7:30–9:30 KOM 257
Prerequisites
The course is designed for students of corresponding fields.
Course Enrolment Limitations
The course is only offered to the students of the study fields the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
After the finish of this course a student will be able to define basic principals of the geometric optic. The student will be able to explain and to interpret laws of the geometric optic, refractive index of the environment, refractive index of air and their interaction. The student will be able to correctly explain and to understand principals of optical phenomenon of ray and wave optic.
Learning outcomes
After the finish of this course a student will be able to define basic principals of the geometric optic.
Syllabus
  • Laws of Geometric optics, the refractive index (or index of refraction) of a medium, the refractive index of air
  • Dispersion, Abbe number, catalogue of optical glasses and other optical materials
  • Fermats principle, derivation of the law of refraction (also known as Snells law or Descartes law) and law of reflection using Fermats principle
  • The planparallel slab, refraction through a prism
  • Minimum deviation by a prism, optical wedge
  • Imaging properties of a spherical surface, imaging in the paraxial approximation
  • Principal points of a spherical surface
  • Imaging with a system of spherical surfaces
  • Principal, nodal and focal points and focal lengths
  • The imaging equations (in the paraxial area)
  • The general, Newtons and Gaussian form of the imaging equations
  • Imaging with thin and thick lenses
  • Imaging with lens systems. Diaphragms in optical systems. Calculation of aperture angle and a field of view. Vignetting. Gullstrands imaging equation. Short repetition of the discussed topics. Final written test.
Literature
  • Fuka, J., Havelka, B.: Optika a atomová fyzika I, SPN 1961
  • Havelka, B.: Geometrická optika I, ČSAV 1956
  • Geometrická + přístrojová optika - Schwendtová V., Bruner R., Martin-Osveta, 1998
  • Baudyš, A.: Technická optika, ČVUT-FS 1990
  • Hafekorn, H., Richter, W.: Synthese optischer systeme, VEB Berlin 1984
Teaching methods
presentations by professionals in the sectors, class discussion
Assessment methods
lecture
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2018, autumn 2019, autumn 2020, autumn 2021, autumn 2022, autumn 2023, autumn 2024.
  • Enrolment Statistics (Autumn 2017, recent)
  • Permalink: https://is.muni.cz/course/med/autumn2017/BOGO0121p