LF:MPOP0932p Applied Optics II-lect. - Course Information
MPOP0932p Applied Optics II - lecture
Faculty of Medicineautumn 2022
- Extent and Intensity
- 2/0/0. 2 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Dušan Hemzal, Ph.D. (lecturer), doc. MUDr. Svatopluk Synek, CSc. (deputy)
doc. MUDr. Svatopluk Synek, CSc. (lecturer) - Guaranteed by
- doc. MUDr. Svatopluk Synek, CSc.
Department of Optometry and Orthoptics – Departments of Non-medical Branches – Faculty of Medicine
Contact Person: Lenka Herníková
Supplier department: Department of Condensed Matter Physics – Physics Section – Faculty of Science - Timetable
- Tue 9:00–10:40 F4,03017
- Prerequisites
- MPOP0831p Applied optics I - lecture
knowledge on basic optometric quantities and procedures - Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- Optometry (programme LF, N-OPTO)
- Optometry (programme LF, N-SZ)
- Health Sciences (programme LF, N-SZ, specialization Teaching Specialization Optics and Optometrics)
- Course objectives
- The successful passing of the course requires for students to be able to
- list and describe basic techniques of handling optical information in the usual optical a ophthalmological equipment
- explain the functionality of the usual optical a ophthalmological equipment and demonstrate the particular physical principle used
- distinguish the level of approximation needed to describe the functionality of the usual optical a ophthalmological equipment
- debate the utilisation of individual techniques in practice - Learning outcomes
- The successful passing of the course requires for students to be able to
- list and describe basic techniques of handling optical information in the usual optical a ophthalmological equipment
- explain the functionality of the usual optical a ophthalmological equipment and demonstrate the particular physical principle used
- distinguish the level of approximation needed to describe the functionality of the usual optical a ophthalmological equipment
- debate the utilisation of individual techniques in practice - Syllabus
- Basic optical phenomena and their description: dispersion of light in matter, principles of refractive index measurements observation of Fraunhofer diffraction, prisms and gratings UV light detection, UV filters and glasses IR light detection, photo-diode, lux-meter polarisation of light at dielectric and metal reflectors coherent and incoherent light imaging (Talbot's phenomena) Wave optics and geometrical optics: wave, ray, pencil of rays establishment of parallel beams, their divergence and cross-section modification parallel-beam splitters narrow pencils of coherent (lasers) and incoherent rays of light narrow pencils refraction and reflection plan-parallel plate, triangular prism light scattering and fluorescence, polarisation of scattered light transmission of light through birefringent material, ordinary and extraordinary rays interaction of linearly polarised light with birefringent material, elliptic polarisation Optical imaging: perfect imaging modality Gauss approximation aberration of optical systems, lower and higher orders ones Seidel and Zernike polynomials in aberration description mathematical description of aberrations of the eye wavefront aberration analysis, WASCA Fundamental imaging systems: optical imaging with focusing, camera obscura, lenses real and virtual images, transforming virtual images to the screen rays for geometrical construction of the images, imaging the ray pencils turning the images with lenses and mirrors compound optical systems, main planes, focuses (including matrix calculus) entrance and exit pupils, angular aperture spherical and chromatic aberration of convex and concave lenses (achromats, aplanats) combination of lenses, decomposition of a lens limiting resolution power, empty magnification of a microscope contrast of optical image, depth of field Optical and ophthalmological instruments: human eye, limit resolution, integration time, spectral sensitivity colour vision, colour triangle, a four-lens complete and reduced spectrometer, emission and absorption spectra orientation of polaroids, three polarisers experiment polarisation microscope, photoelasticimetry holographic image reconstruction, rainbow holograms lasers for ophthalmology artificial contrast creation: light field and dark field microscopies phase contrast microscopy differential interference contrast Nomarski contrast space frequencies filtration methods 3D imaging and observation: corneal topography GDx retinal neural fibres analyser biometry of the eye, retinal topography computer scanning techniques, coherent scanning laser ophthalmoscope
- Literature
- Teaching methods
- the lectures focuse on connecting the key optical methods with instrumental application in optometry
- Assessment methods
- oral exam
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
Information on the extent and intensity of the course: 30. - Listed among pre-requisites of other courses
- Teacher's information
- http://www.physics.muni.cz/~hemzal/vyuka/vyuka.shtml
- Enrolment Statistics (autumn 2022, recent)
- Permalink: https://is.muni.cz/course/med/autumn2022/MPOP0932p