LF:BOMA0222 Mathematics II - Course Information
BOMA0222 Mathematics II
Faculty of MedicineSpring 2013
- Extent and Intensity
- 2/2/0. 4 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Ivo Moll, CSc. (lecturer)
doc. RNDr. Lenka Přibylová, Ph.D. (lecturer)
RNDr. Ivo Moll, CSc. (seminar tutor)
doc. RNDr. Lenka Přibylová, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Lenka Přibylová, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: Anna Petruželková
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- The course BOMA012
- Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- Course objectives
- The course provides an introduction to differential and integral calculus of functions of one real variable and introduces basics of differential and integral calculus of functions of more than one variable.
- Syllabus
- Differential calculus in one real variable. Derivative and its geometrical meaning. Extrems, inflex points, differential, l'Hospital's rule. Graphs of functions. Taylor polynomial. Integral calculus in one variable. Primitive function, basic formulas. Per partes and substitution methods. Riemann integral and its geometric applications. Infinite integral. Differential calculus in two real variables. Basic ideas, domain of definition, graph, limit and continuity. Partial derivatives, tangent plane and differential. Local extremes. Integral calculus in two real variables. Two-variable integral calculus, Fubini's theorem, transformation to polar coordinates. Geometric applications of double integrals.
- Literature
- PŘIBYLOVÁ, Lenka and Robert MAŘÍK. Matematika I. a II. Elportál. Brno: Masarykova univerzita, 2007. ISSN 1802-128X. URL info
- DOŠLÁ, Zuzana and Jaromír KUBEN. Diferenciální počet funkcí jedné proměnné (Differential Calculus of Functions of One Variable). Brno: Masarykova Univerzita v Brně, 2003, 215 pp. skriptum. ISBN 80-210-3121-2. info
- NOVÁK, Vítězslav. Integrální počet v R. vydání třetí, přepracované. Brno: Masarykova univerzita v Brně-PřF, 2001, 89 pp. ISBN 80-210-2720-7. info
- DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. 3. vyd. Brno: Masarykova univerzita, 2006, iv, 144. ISBN 9788021041592. info
- SIKORSKI, Roman. Diferenciální a integrální počet : funkce více proměnných. Translated by Ilja Černý. 2., změn. a dopl. vyd., Vyd. Praha: Academia, 1973, 495 s. URL info
- Teaching methods
- lecture, practice
- Assessment methods
- written and oral exam
- Language of instruction
- Czech
- Enrolment Statistics (Spring 2013, recent)
- Permalink: https://is.muni.cz/course/med/spring2013/BOMA0222