PdF:MA0026 Number Theory - Course Information
MA0026 Number Theory
Faculty of EducationAutumn 2024
- Extent and Intensity
- 2/2/1.3. 6 credit(s). Type of Completion: zk (examination).
In-person direct teaching - Teacher(s)
- Mgr. Helena Durnová, Ph.D. (lecturer)
RNDr. Jakub Novák (seminar tutor) - Guaranteed by
- Mgr. Helena Durnová, Ph.D.
Department of Mathematics – Faculty of Education
Supplier department: Department of Mathematics – Faculty of Education - Timetable of Seminar Groups
- MA0026/KombiSem01: Fri 25. 10. 9:00–12:50 učebna 39, Fri 15. 11. 12:00–15:50 učebna 42, Fri 22. 11. 15:00–18:50 učebna 39, Fri 13. 12. 8:00–11:50 učebna 37, H. Durnová
MA0026/PrezPred01: Mon 14:00–15:50 učebna 37, H. Durnová
MA0026/PrezSem01: Mon 16:00–17:50 učebna 37, H. Durnová - Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 8 fields of study the course is directly associated with, display
- Course objectives
- At the end of this course, students should be able to understand and explain notions and theorems of number theory, including its use in everyday life as well as the teaching practice
- Learning outcomes
- At the end of the course students should be able to understand and to solve ground tasks of number theory: Divisibility of natural numbers, proofs of chosen theorems. The greatest common divisor, the least common multiple, exercises. Prime numbers and some of their interesting properties. Congruence of a single variable and their solutions. Indefinite equations. Euler's function, Euler's theorem, arithmetic functions
- Syllabus
- Divisibility of natural numbers, proofs of chosen theorems. The greatest common divisor, the least common multiple, exercises. Prime numbers and some of their interesting properties. Congruence of a single variable and their solutions. Indefinite equations. Euler's function, Euler's theorem, arithmetic functions
- Literature
- required literature
- LEPKA, Karel. Základy elementární teorie čísel (Elements of elementary number theory). 1. vydání. Masarykova univerzita, 2023, 76 pp. ISBN 978-80-280-0423-1. info
- recommended literature
- Znám, Štefan. Theória čísel. 1. vyd. Bratislava: Alfa, 1986. 207 s.
- KOWAL, Stanisław. Matematika pro volné chvíle : (zábavou k vědě). Translated by Jiří Jarník. 2., upr. vyd. Praha: SNTL - Nakladatelství technické literatury, 1985, 323 s. URL info
- BIAŁAS, Aleksander. O dělitelnosti čísel. Translated by Pavel Vít. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1966, 97 s. info
- VINOGRADOV, Ivan Matvejevič. Základy theorie čísel. Translated by I. M. Hrázský. 1. vyd. Praha: Československá akademie věd, 1953, 173 s. info
- Teaching methods
- Lecture providing to students an insight into the calculus of a structure of all inegers and natural numbers with aiming on mathematics of basic school.
- Assessment methods
- Written test, followed by a brief discussion.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
Information on the extent and intensity of the course: 16 hodin (kombinovaná forma).
- Enrolment Statistics (recent)
- Permalink: https://is.muni.cz/course/ped/autumn2024/MA0026