FY2BP_CMF1 Calculus 1 - Questions Math for Physics Problem Solving

Faculty of Education
Autumn 2015
Extent and Intensity
0/2/0. 2 credit(s). Type of Completion: z (credit).
Teacher(s)
PhDr. Mgr. Michaela Drexler, Ph.D. (lecturer)
Guaranteed by
doc. RNDr. Petr Sládek, CSc.
Department of Physics, Chemistry and Vocational Education – Faculty of Education
Contact Person: Jana Jachymiáková
Supplier department: Department of Physics, Chemistry and Vocational Education – Faculty of Education
Timetable
Mon 16:40–18:20 učebna 3
Prerequisites (in Czech)
Učivo matematiky v rozsahu gymnázia.
Course Enrolment Limitations
The course is only offered to the students of the study fields the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The aim of the course is the practice knowledge gained in lecture "Mathematics for physicists I examples. Examples are selected so that they always, if possible, include some important elements of theme, discussed in the lecture.
At the end of the student will be able to work with limits, determine the properties of functions, derivative of functions and manages the integration of functions.
Syllabus
  • Coordinates and vectors: Cartesian coordinates on the line in the   plane and space, polar coordinates, the concept of vector, adition of vectors, scalar and vector product, the concept of vector bases Functions of one variable graph, functions, features, functions, some basic functions, the concept of limits, continuity and derivative of a function Indefinite and definite integral The notion of primitive functions, the calculation of indefinite integral, some Integrals and their use
Literature
  • JIRÁSEK, František, Eduard KRIEGELSTEIN and Zdeněk TICHÝ. Sbírka řešených příkladů z matematiky : logika a množiny, lineární a vektorová algebra, analytická geometrie, posloupnosti a řady, diferenciální a integrální počet funkcí jedné proměnné. 2. nezměn. vyd. Praha: SNTL - Nakladatelství technické literatury, 1981, 817 s. info
  • HÁJEK, Jiří [matematik]. Cvičení z matematické analýzy : diferenciální počet v R [Hájek, 2003]. 1. vyd. Brno: Masarykova univerzita, 2003, 103 s. ISBN 80-210-3260-X. info
  • HÁJEK, Jiří. Cvičení z matematické analýzy : integrální počet v R. 1. vyd. Brno: Masarykova univerzita, 2000, 102 s. ISBN 8021022639. info
  • DULA, Jiří and Jiří HÁJEK. Cvičení z matematické analýzy : Riemannův integrál. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 84 s. info
  • DULA, Jiří and Jiří HÁJEK. Cvičení z matematické analýzy : nekonečné řady. Vyd. 1. Brno: Vydavatelství Masarykovy univerzity, 1987, 76 s. info
  • DULA, Jiří and Jiří HÁJEK. Cvičení z matematické analýzy : obyčejné diferenciální rovnice. 2. vyd. Brno: Masarykova univerzita, 1998, 74 s. ISBN 8021019751. info
  • http://math.feld.cvut.cz/0educ/material.htm
    http://is.muni.cz/elportal/estud/prif/ps06/3143322/prednaska.pdf
    http://mathonline.fme.vutbr.cz/
Teaching methods
Theoretical training, independent work.
Assessment methods
Type of course: training exercises
Requirements for obtaining credit:
1. active participation in exercises,
2. the performance of individual tasks,
3. cope with ongoing written work,
4. manage credit written work.
Language of instruction
Czech
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
The course is also listed under the following terms Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2016, Autumn 2017.
  • Enrolment Statistics (Autumn 2015, recent)
  • Permalink: https://is.muni.cz/course/ped/autumn/FY2BP_CMF1