PdF:FC6801 Basics of Advanced Mathematics - Course Information
FC6801 Basics of Advanced Mathematics
Faculty of EducationAutumn 2018
- Extent and Intensity
- 1/1/0. 3 credit(s). Type of Completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Petr Sládek, CSc. (lecturer)
Mgr. Renáta Bednárová (lecturer)
PhDr. Mgr. Michaela Drexler, Ph.D. (lecturer) - Guaranteed by
- doc. RNDr. Petr Sládek, CSc.
Department of Physics, Chemistry and Vocational Education – Faculty of Education
Contact Person: Jana Jachymiáková
Supplier department: Department of Physics, Chemistry and Vocational Education – Faculty of Education - Timetable of Seminar Groups
- FC6801/Kombi01: Sat 3. 11. 10:00–11:50 učebna 3, Sat 24. 11. 10:00–11:50 učebna 7, Sat 1. 12. 16:00–17:50 učebna 3, Sat 15. 12. 16:00–17:50 učebna 3, P. Sládek
FC6801/Prez02: Wed 13:00–13:50 učebna 25, Wed 14:00–14:50 učebna 25, R. Bednárová, P. Sládek - Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 8 fields of study the course is directly associated with, display
- Course objectives
- The aim of this course is to obtain a clear knowledge bases of higher mathematics. Emphasis is placed on the logical construction of the science disciplines and to acquire knowledge and skills needed to understand subjects of the study program.
- Learning outcomes
- After completing the course, students should know and be able to:
- Basic definitions and sentences of the fundamentals of higher mathematics.
- Calculate simple application examples - Syllabus
- 1. Functions of one variable. Graphs, basic properties of functions, some elementary functions. 2. Linear functions, absolute value. 3. The functions, quadratic, power, fractional linear, exponential, logarithmic 4. Trigonometric functions. 5. The term limits and continuity. 6. Derivation of function, differential function. 7. Concept of primitive functions, indefinite integral. 8. Calculation of indefinite integrals. 9. Determine integral and its calculation. 10. Functions of several variables, differential and integral calculus of several variables. 11. Application of differential calculus. 12. Application of integral calculus.
- Literature
- JIRÁSEK, F., KRIEGELSTEIN, E., TICHÝ, Z.: Sbírka řešených příkladů z matematiky. SNTL, Alfa, Praha 1987.
- KALAS, Josef and Jaromír KUBEN. Integrální počet funkcí více proměnných. 1. vyd. Brno: Masarykova univerzita, 2009, vi, 272. ISBN 9788021049758. info
- NOVÁK, Vítězslav. Integrální počet funkcí jedné reálné proměnné. Vyd. 1. Brno: Masarykova univerzita v Brně, 2005, 93 s. ISBN 8021038500. info
- NOVÁK, Vítězslav. Diferenciální počet funkcí jedné reálné proměnné. 1. vyd. Brno: Masarykova univerzita v Brně, 2004, 158 s. ISBN 802103386X. info
- Teaching methods
- lecture
- Assessment methods
- Credit test - written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
Information on the extent and intensity of the course: 8 hodin. - Teacher's information
- http://amper.ped.muni.cz/sladek
- Enrolment Statistics (Autumn 2018, recent)
- Permalink: https://is.muni.cz/course/ped/autumn2018/FC6801