Ma3DC_KAN6 Mathematical Analysis 6

Faculty of Education
Spring 2009
Extent and Intensity
0/8/0. 1 credit(s). Type of Completion: z (credit).
Teacher(s)
prof. Mgr. Pavel Řehák, Ph.D. (lecturer)
Guaranteed by
PhDr. Jiřina Novotná, Ph.D.
Department of Mathematics – Faculty of Education
Contact Person: prof. Mgr. Pavel Řehák, Ph.D.
Prerequisites (in Czech)
MaRSS_KAN5 Mathematical Analysis 5
Course Enrolment Limitations
The course is only offered to the students of the study fields the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Integral calculus of functions of more variables and its applications in geometry and physics (continuation of course Mathematical Analysis 5). At the end of this course, students should be able to: construct more-dimensional integral, describe its properties, use the Fubini theorem and basic types of transformations, apply in solving simple problems.
Syllabus
  • Integral calculus of functions of more variables and its applications in geometry and physics. Integral is constructed by means of the Jordan measure. Fubini's theorem and use of the transformation are discussed.
Literature
  • DULA, Jiří and Jiří HÁJEK. Cvičení z matematické analýzy : Riemannův integrál. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 84 s. info
  • RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
  • RÁB, Miloš. Riemannův integrál v En. Vyd. 1. Brno: Rektorát UJEP Brno, 1985, 80 s. info
  • JARNÍK, Vojtěch. Integrální počet. Vyd. 2. Praha: Academia, 1976, 763 s. URL info
Assessment methods
Lectures
Language of instruction
Czech
Further Comments
The course is taught annually.
The course is taught: in blocks.
The course is also listed under the following terms Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2010, Spring 2011, Spring 2012, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017.
  • Enrolment Statistics (Spring 2009, recent)
  • Permalink: https://is.muni.cz/course/ped/spring2009/Ma3DC_KAN6