MS2RC_MAN2 Mathematical analysis 2

Faculty of Education
Spring 2014
Extent and Intensity
0/0/16. 6 credit(s). Type of Completion: zk (examination).
Teacher(s)
RNDr. Karel Lepka, Dr. (lecturer)
Guaranteed by
PhDr. Jiřina Novotná, Ph.D.
Department of Mathematics – Faculty of Education
Supplier department: Department of Mathematics – Faculty of Education
Course Enrolment Limitations
The course is only offered to the students of the study fields the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Integral calculus of functions of one variable and differential calculus of functions of more variables. At the end of this course, students should be able to: find an antiderivative; construct and find value of Riemann integral; apply this integral to find area and volume; explain the concept of limit, partial derivative, differential and related concepts for functions of more variables; apply this theory to find e.g. tangent hyperplane or to solve extremization problems.
Syllabus
  • Integral calculus of functions of one variable: antiderivative, indefinite integral, methods of integration, Riemann integral, properties, improper integrals, geometrical and physical applications. Differential calculus of functions of more variables: limit, continuity, partial derivative, extrema, implicit functions
Literature
  • V. Novák, Integrální počet funkcí jedné reálné proměnné, skr. PdF MU Brno, 1995
  • PLCH, Roman, Zuzana DOŠLÁ and Petr SOJKA. CD-ROM Matematická analýza s programem Maple: 1. Diferenciální počet funkcí více proměnných (CD-ROM Mathematical analysis with Maple: 1. Differencial calculus). Zpravodaj ÚVT MU. Brno: Masarykova univerzita, 2000, X., No 5, p. 12-13. ISSN 1212-0901. webová stránka autora s produktem webová stránka časopisu s článkem info
  • DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
Teaching methods
Lectures
Assessment methods
Lecture. Written examination (theory + examples). To enroll for MA 2 examination, one needs to have passed MA 1 examination.
Language of instruction
Czech
Further comments (probably available only in Czech)
Information on the extent and intensity of the course: 16.
The course is also listed under the following terms Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, Spring 2013, Spring 2015, Spring 2016, Spring 2017, Spring 2019, Spring 2020, Spring 2021, Spring 2022, Spring 2023.
  • Enrolment Statistics (Spring 2014, recent)
  • Permalink: https://is.muni.cz/course/ped/spring2014/MS2RC_MAN2