MA2BP_PAN3 Mathematical Analysis 3

Faculty of Education
Spring 2015
Extent and Intensity
2/0/0. 4 credit(s). Type of Completion: zk (examination).
Teacher(s)
prof. Mgr. Pavel Řehák, Ph.D. (lecturer)
Guaranteed by
doc. RNDr. Jaroslav Beránek, CSc.
Department of Mathematics – Faculty of Education
Supplier department: Department of Mathematics – Faculty of Education
Timetable
Wed 11:10–12:50 učebna 30
Course Enrolment Limitations
The course is only offered to the students of the study fields the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The aim is to get knowledge about infinite series including applications and about elementary methods for solving some elementary differential equations. Students shoulde be able to find a sum of a series, to decide about convergence or divergence, and to apply infinite series e.g. in integral calculus. Also they should have some knowledge about mathematical modelling (via differential equations).
Syllabus
  • Infinite number series, basic properties; criteria for convergence of series with nonnegative terms; absolutely and nonabsolutely convergent series; sequences and series of functions; power and Taylor series, their applications; ordinary differential equations, basic concepts, motivation; elementary methods for solving some first order differential equations; linear second order differential equations
Literature
  • Řehák, Pavel. Nekonečné řady. Doplňkový učební text. http://users.math.cas.cz/~rehak/vyuka.html
  • Řehák, Pavel. Diferenciální rovnice. Doplňkový učební text. http://users.math.cas.cz/~rehak/vyuka.html
  • DOŠLÁ, Zuzana, Roman PLCH and Petr SOJKA. Matematická analýza s programem Maple. Díl 2, Nekonečné řady. (The Multivariable Calculus with program Maple. Part 2, Infinite series.). prvni. Brno: Masarykova univerzita, 2002, 453 pp. Matematická analýza s programem Maple, 2. ISBN 80-210-3005-4. Domovská stránka projektu Domovská stránka Díl 1. info
  • NOVÁK, Vítězslav and Zuzana DOŠLÁ. Nekonečné řady (Infinite series). Prvni dotisk 1. vyd. Brno: Masarykova univerzita v Brně, 2002, 120 pp. skripta. ISBN 80-210-1949-2. info
  • PLCH, Roman. Příklady z matematické analýzy, Diferenciální rovnice. 1. vydání. Brno: Masarykova univerzita, 2002, 31 pp. ISBN 80-210-2806-8. info
  • KALAS, Josef and Miloš RÁB. Obyčejné diferenciální rovnice (Ordinary differential equations). 2nd ed. Brno: Masarykova univerzita, 2001, 207 pp. ISBN 80-210-2589-1. info
Teaching methods
lectures
Assessment methods
Written examination (theory + examples). A necessary condition for writing a test is to gain credits for the associated seminar.
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
Information on completion of the course: Nutnou podmínkou pro účast na zkoušce je získání zápočtu z předmětu MA2BP_CAN 3.
The course is taught annually.
The course is also listed under the following terms Autumn 2008, Autumn 2009, Spring 2010, Spring 2011, Spring 2012, Spring 2013, Spring 2014, Spring 2016, Spring 2017, Spring 2018, Spring 2019.
  • Enrolment Statistics (Spring 2015, recent)
  • Permalink: https://is.muni.cz/course/ped/spring2015/MA2BP_PAN3