PřF:Bi7050 Mass spectrometry of proteins - Course Information
Bi7050 Protein characterisation using mass spectrometry
Faculty of ScienceAutumn 2012
- Extent and Intensity
- 1/0/0. 1 credit(s) (plus extra credits for completion). Recommended Type of Completion: k (colloquium). Other types of completion: zk (examination).
- Teacher(s)
- prof. RNDr. Zbyněk Zdráhal, Dr. (lecturer)
RNDr. Hana Konečná (lecturer)
prof. RNDr. Šárka Pospíšilová, Ph.D. (lecturer) - Guaranteed by
- prof. RNDr. Jiří Fajkus, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: prof. RNDr. Zbyněk Zdráhal, Dr.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- each even Friday 8:00–9:50 C02/211
- Prerequisites
- Basic knowledge of biochemistry and molecular biology
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 30 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to: understand and explain the basic principles of mass spectrometry; describe MS instrumentation currently used in proteomics understand to basics of interpretation of MS and MS/MS data explain to principles of protein identification and their posttranslational modifications by mass spectrometry explain principles of MS quantification methods describe present possibilities of mass spectrometry in proteomics propose application of appropriate mass spectometric techniques for different types of biological and biomedical experiments
- Syllabus
- 1. Mass spectrometry (MS)
- Method principles, method possibilities, overview of MS instrumentation and ionization techniques (MALDI-MS, ESI-IT MS, FTMS, hybrid systems).
- 2. Sample preparation and separation (RNDr. Hana Konečná)
- General rules for sample preparation before MS analysis. Strategies for processing of protein samples (selection of appropriate techniques in consideration of purpose of experiment).
- 3. Basic methods of protein identification
- Peptide mapping, MS/MS ion search, identification of proteins with unknown sequence(de-novo sequencing), basic proteomic approaches (bottom-up, top-down), protein homology.
- 4. Quantification
- Methods of relative and absolute quantification in mass spectrometry (mass labels, isobaric labels-iTRAQ).
- 5. Determination of protein modifications
- Overview of modification types (chemical, post-translational modifications), mutations. Phosphoproteins - sample preparation and detection, localization of phosphorylations. Glycoproteins sample preparation and detection, glycan analysis.
- 6. Protein arrays (RNDr. Šárka Pospíšilová, PhD)
- Protein array types, their preparation, detection a quantification.
- 7. Proteomic applications
- Mass spectrometry and disease diagnostics (biomarker identification, protein profiling), proteomic projects in our Core lab.
- Literature
- Proteome research : mass spectrometry. Edited by Peter James. Berlin: Springer-Verlag, 2001, xxi, 274 s. ISBN 3-540-67255-9-. info
- Teaching methods
- lecture, class discussion
- Assessment methods
- colloquium or oral examination
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
- Enrolment Statistics (recent)
- Permalink: https://is.muni.cz/course/sci/autumn2012/Bi7050