PřF:M7521 Probability and Statistics - Course Information
M7521 Probability and Statistics
Faculty of ScienceAutumn 2002
- Extent and Intensity
- 2/2/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Marie Budíková, Dr. (lecturer)
Mgr. Lucie Hampelová, Ph.D. (seminar tutor)
RNDr. Štěpán Mikoláš (alternate examiner) - Guaranteed by
- doc. RNDr. Eduard Fuchs, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: RNDr. Marie Budíková, Dr. - Timetable of Seminar Groups
- M7521/01: No timetable has been entered into IS. Š. Mikoláš
M7521/02: No timetable has been entered into IS. Š. Mikoláš
M7521/03: No timetable has been entered into IS. L. Hampelová - Prerequisites
- M5520 Mathematical Analysis 4 || M2412 Mathematical analysis II
M5520 and M6520 or M1411 - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, B-MA)
- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, N-MA)
- Course objectives
- Descriptive statistics. Probability space, independent events, conditional probability. Random variables, their distribution and characteristics. Law of large numbers, central limit theorem.
- Syllabus
- Descriptive statistics. Basic and sample file, scalar and vector variables, functional and numerical characteristics of these variables. Theory of probability. Empirical law of large numbers, axiomatic definition of probability, basic properties of probability, classical, geometrical and conditional probability, stochastic independet events. Random variables and random vectors, discrete and continuous distributions. Transformations of random variables. Quantil, expected value, variance, covariance. Law of large numbers, central limit theorem.
- Literature
- BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Popisná statistika (Descriptive Statistics). 3., doplněné vyd. Brno: Masarykova univerzita, 1998, 52 pp. ISBN 80-210-1831-3. info
- BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Teorie pravděpodobnosti a matematická statistika. Sbírka příkladů. (Probability Theory and Mathematical Statistics. Collection of Tasks.). 2.,přepracované vyd. Brno: Masarykova univerzita Brno, 1998, 127 pp. ISBN 80-210-1832-1. info
- OSECKÝ, Pavel. Pravděpodobnost a statistika. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 354 s. info
- Assessment methods (in Czech)
- Výuka probíhá v rozsahu 2 h přednášky a 2 h cvičení týdně. Část cvičení probíhá v počítačové učebně s využitím speciálního statistického software. Zkouška je písemná a ústní.
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- Teacher's information
- http://www.math.muni.cz/~budikova
- Enrolment Statistics (Autumn 2002, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2002/M7521