F1421 Basic mathematical methods in Physics 1

Faculty of Science
Autumn 2003
Extent and Intensity
2/1. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: graded credit.
Teacher(s)
Mgr. Pavla Musilová, Ph.D. (seminar tutor)
Mgr. Ondřej Přibyla (seminar tutor)
doc. Mgr. Josef Klusoň, Ph.D., DSc. (seminar tutor)
prof. RNDr. Jana Musilová, CSc. (lecturer)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Jana Musilová, CSc.
Timetable of Seminar Groups
F1421/01: No timetable has been entered into IS. P. Musilová
F1421/02: No timetable has been entered into IS. O. Přibyla
F1421/03: No timetable has been entered into IS. J. Klusoň
F1421/04: No timetable has been entered into IS. J. Klusoň
Prerequisites
It is recommended to master basic operations of differential and integral calculus on the secondary school level.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The course gives the basic review of fundamental mathematical procedures used in physical theories, mainly those of mathematical analysis (differential and integral calculus of one variable and many variables, ordinary differential equations) and algebra (vector algebra in twodimensional and threedimensional spaces, basic tensor calculus). The understanding of fundamental concepts, calculus, and physical applications are emphasized.
Syllabus (in Czech)
  • 1. Derivace a integrál funkce jedné proměnné, procvičení základních operací. 2. Základy vektorové algebry v R-2 a R-3: vektory, operace s vektory, skalární a vektorový součin a jejich geometrická a fyzikální interpretace, počítání v bázích. 3. Základy vektorové algebry v R-2 a R-3: přechody mezi bázemi. 4. Obyčejné diferenciální rovnice: separace proměnných, lineární diferenciální rovnice prvního, fyzikální aplikace (rozpad jader, absorpce záření). 5. Obyčejné diferenciální rovnice: lineární rovnice druhého a vyššího řádu s konstatními koeficienty, fyzikální aplikace (pohybové rovnice částice, harmonický oscilator, tlumené a vynucené kmity). 6. Jednoduché soustavy pohybových rovnic. 7. Křivočaré souřadnice. 8. Křivkový integrál: křivka, parametrizace, křivkový integrál prvního druhu a fyzikální aplikace (délka, hmotnost, těžiště, momenty setrvačnosti křivky), křivkový integrál druhého druhu a fyzikální aplikace (práce podél křivky). 9. Skalární funkce dvou a tří proměnných: derivace v daném směru, parciální derivace, gradient. 10. Skalární funkce dvou a tří proměnných: úplný diferenciál, kmenová funkce výrazu pro elementární práci (existence potenciálu). 11. Dvojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (plošný obsah, fyzikální charakteristiky dvojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti). 12. Trojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (plošný obsah, fyzikální charakteristiky dvojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti). 13. Základy tenzorové algebry: tenzorové fyzikální veličiny, operace s tenzory, vyjádření v bázích.
Literature
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
Assessment methods (in Czech)
Typ výuky a zkoušky přednáška+cvičení, klasifikovaný zápočet - viz podmínky v položce Informace učitele.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
Teacher's information
http://www.physics.muni.cz/~pavla/teaching.php
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 2010 - only for the accreditation, Autumn 2001, Autumn 2002, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.
  • Enrolment Statistics (Autumn 2003, recent)
  • Permalink: https://is.muni.cz/course/sci/autumn2003/F1421