G9501 Minerogenetic processes

Faculty of Science
Autumn 2003
Extent and Intensity
2/1. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Zdeněk Losos, CSc. (lecturer)
prof. RNDr. Milan Novák, CSc. (lecturer)
Guaranteed by
doc. RNDr. Rostislav Melichar, Dr.
Department of Geological Sciences – Earth Sciences Section – Faculty of Science
Contact Person: Běla Hrbková
Prerequisites
! G9500 Minerogenetic processes
Termination of Mineralogy I and Mineralogy II courses
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 54 student(s).
Current registration and enrolment status: enrolled: 0/54, only registered: 0/54, only registered with preference (fields directly associated with the programme): 0/54
fields of study / plans the course is directly associated with
Course objectives
Origin of granitic pegmatites and their minerals - role of fluida in their orign. The four classes of granitic pegmatites (abyssal, muscovite, rare-element, miarolitic), their origin. Classification of pegmatites of the rare-element class and pegmatite types: rare-earth with allanite-monazite and gadolinite subtypes* beryl with beryl-columbite, beryl-columbite-phosphate subtypes, complex with spodumene, petalite, lepidolite, elbaite, amblygonite subtypes* albite-spodumene, albite. Characteristic of the rare-element pegmatites. Their shape, attitude and size, internal structure, mineralogy, geochemistry, models of internal pegmatite consolidation, origin of metasomatic assemblages, fractionation of elements. Relation of pegmatites to parental granites a their space distribution - regional zonality, pegmatite fields, belts and provinces. Theory of hydrothermal process in confrontation with recent hydrothermal activity (volcanoes, hydrotherms on the oceanic floor): a) T - P bounds of hydrothermal process b) chemistry of hydrothermal medium c) forms of material transportation in hydrothermal medium d) gas-fluid inclusions as indicators of hydrothermal medium Hydrothermal paragenesis - overview of mineralization types (Pb-Zn, Cu ores-in copper bearing sandstones) High temperature mineral paragenesis (formerly designated as pneumatolytic) Magmatogenic paragenesis (intramagmatic - platinoids, Cu-Ni-Fe, Fe-Ti, Ni-Co) Origin of minerals from volcanic exhalations. Disintegration processes (including sulphide deposits). Chemogenic sedimentation (evaporites, Fe-ores). Biomineralization. Origin of minerals during diaganesis. Contact metamorphism - mineral associations. Regional metamorphism - mineral associations. Metasomatic alteration and mineralization.
Syllabus
  • Origin of granitic pegmatites and their minerals - role of fluida in their orign. The four classes of granitic pegmatites (abyssal, muscovite, rare-element, miarolitic), their origin. Classification of pegmatites of the rare-element class and pegmatite types: rare-earth with allanite-monazite and gadolinite subtypes* beryl with beryl-columbite, beryl-columbite-phosphate subtypes, complex with spodumene, petalite, lepidolite, elbaite, amblygonite subtypes* albite-spodumene, albite. Characteristic of the rare-element pegmatites. Their shape, attitude and size, internal structure, mineralogy, geochemistry, models of internal pegmatite consolidation, origin of metasomatic assemblages, fractionation of elements. Relation of pegmatites to parental granites a their space distribution - regional zonality, pegmatite fields, belts and provinces. Theory of hydrothermal process in confrontation with recent hydrothermal activity (volcanoes, hydrotherms on the oceanic floor): a) T - P bounds of hydrothermal process b) chemistry of hydrothermal medium c) forms of material transportation in hydrothermal medium d) gas-fluid inclusions as indicators of hydrothermal medium Hydrothermal paragenesis - overview of mineralization types (Pb-Zn, Cu ores-in copper bearing sandstones) High temperature mineral paragenesis (formerly designated as pneumatolytic) Magmatogenic paragenesis (intramagmatic - platinoids, Cu-Ni-Fe, Fe-Ti, Ni-Co) Origin of minerals from volcanic exhalations. Disintegration processes (including sulphide deposits). Chemogenic sedimentation (evaporites, Fe-ores). Biomineralization. Origin of minerals during diaganesis. Contact metamorphism - mineral associations. Regional metamorphism - mineral associations. Metasomatic alteration and mineralization.
Literature
  • Nesse, William D. Introduction to Mineralogy, 2000, Oxford university press, ISBN 0-19-510691-1, 442 pp.
  • Philpotts, Anthony R. Principles of igneous and metamorphic petrology, 1990, Prentice Hall, ISBN 0-13-691361-X, 498pp., London, Sydney, Toronto.
  • SLAVÍK, František, Jiří NOVÁK and Jaroslav KOKTA. Mineralogie. 5. přeprac. a dopl. vyd. Praha: Academia, 1974, 486 s. info
  • ZOLTAI, Tibor and James H. STOUT. Mineralogy :concepts and principles. Minneapolis, Minnesota: Burgess publishing company, 1985, x, 505 s. ISBN 0-8087-2606-4. info
  • KLEIN, Cornelis and Cornelius S. HURLBUT. Manual of mineralogy : (after James D. Dana). 21st ed. New York: John Wiley & Sons, 1993, xii, 681 s. ISBN 0-471-57452-X. info
Assessment methods (in Czech)
Přednášky, cvičení ústní zkouška z teorie v rozsahu sylabu
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 2002, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2009, Autumn 2011, Autumn 2011 - acreditation, Autumn 2013, Autumn 2014, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023.
  • Enrolment Statistics (Autumn 2003, recent)
  • Permalink: https://is.muni.cz/course/sci/autumn2003/G9501