PřF:M5180 Numerical Methods II - Course Information
M5180 Numerical Methods II
Faculty of ScienceAutumn 2005
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Ivanka Horová, CSc. (lecturer)
Mgr. Jiří Zelinka, Dr. (seminar tutor) - Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. RNDr. Ivanka Horová, CSc. - Timetable
- Thu 13:00–14:50 N21
- Timetable of Seminar Groups:
M5180/02: Thu 9:00–9:50 M3,04005 - dříve Janáčkovo nám. 2a, J. Zelinka, Rozvrhově doporučeno pro FI - Prerequisites
- M4180 Numerical methods I || ( FI:M028 Numerical Methods I )
Differential and inegral calculus of one and more variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 8 fields of study the course is directly associated with, display
- Course objectives
- This course together with the course Numerical methods I provides systematic explanation of numerical mathematics as the special scientific discipline.The course is focused on numerical methods of mathematical analysis,namely on inerpolation,numerical differen- tiation,numerical integration.Advantages and disadvantages of methods mentioned above are shown. In addition to the classical methods the modern procedures suitable for algorithmization and computer implementation are also presented.
- Syllabus
- Interpolation-Lagrange interpolation polynomial,Newton interpolation polynomial,the error of the polynomial interpolation,iterated inter- polation,Hermite interpolation polynomial,,cubic spline interpolation, general interpolation process. Least-squares method. Numerical differentiation-formulas based on a derivative of an interpolation polynomial,Richardson extrapolation. Numerical integration-quadrature formulas,degree of exactness and error,Gaussian quadratures,Lobatto quadrature,Newton-Cotes quadratures composite quadratures,inegrals with singularities,adaptive quadratures
- Literature
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- HOROVÁ, Ivana. Numerické metody. 1st ed. Brno: Masarykova univerzita, 1999, 230 pp. ISBN 80-210-2202-7. info
- PŘIKRYL, Petr. Numerické metody matematické analýzy. 1. vyd. Praha: Nakladatelství technické literatury, 1985, 187 s. URL info
- MATHEWS, John H. Numerical methods for mathematics, science and engineering. 2nd ed. Englewood Cliffs: Prentice-Hall International, 1992, 646 pp. X. ISBN 0-13-625047-5. info
- BURDEN, Richard L. and Douglas J. FAIRES. Numerical analysis. 3rd ed. Boston: PWS Publishing Company, 1985, 676 pp. ISBN 0-87150-857-5. info
- VITÁSEK, Emil. Numerické metody. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1987, 512 s. URL info
- HOROVA, Ivana and Jiří ZELINKA. Numerické metody (Numerical Methods). 2nd ed. Brno: Masarykova univerzita v Brně, 2004, 294 pp. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
- Assessment methods (in Czech)
- Výuka : přednáška, cvičení v počítačové učebně,podmínka pro udělení zápočtu-účast na cvičení,získání dostatečného počtu bodů z pisemek během semestru Zkouška:písemná a (ústní).
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
- Enrolment Statistics (Autumn 2005, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2005/M5180