PřF:C8780 Organic Photochemistry - Course Information
C8780 Organic Photochemistry
Faculty of ScienceAutumn 2006
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- prof. RNDr. Petr Klán, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Petr Klán, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science - Prerequisites
- ( C1020 General Chemistry && C2021 Organic Chemistry I && C3022 Organic Chemistry II &&( C4660 Basic Physical Chemistry || C3140 Physical Chemistry I || C3401 Physical Chemistry I )&&( C4020 Advanced Physical Chemistry || C4402 Physical Chemistry II ))||SOUHLAS
Organic chemistry; physical organic chemistry; physical chemistry; kinetics; quantum chemistry; physics. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 24 fields of study the course is directly associated with, display
- Course objectives
- The lecture discusses the chemistry that follows the absorption of electromagnetic radiation. It explains the extraordinary influence of visible or ultraviolet light on chemical behaviour of organic compounds.
- Syllabus
- 1. Overview: The electronic excitation and deexcitation of organic molecules. State energy diagrams. Potential energy surfaces. Lambert-Beer law. Quantum yield. Electronic orbitals and configurations. Transitions between states. Singlet-triplet splitting. Jablonski diagram. Franck-Condon principle. Nuclear geometry of excited molecules. 2. Radiative transitions: Fluorescence and phosphorescence. Excimers and exciplexes. Laser spectroscopy. 3. Radiationless transitions: Internal conversion. Intersystem crossing. Spin-orbital coupling. Vibrational relaxation. Heavy atom effect. 4. Mechanistic photochemistry: Kinetics and energetics. Stern-Volmer plot. Actinometry. Photosensitization. Reactive intermediates. Biradicals. 5. Energy transfer. Electron transfer. Marcus theory. 6. Cycloadditions and photoadditions. 7. Photofragmentation reactios. 8. Isomerizations and rearrangements. 9. Photochemical aromatic substitution. Photoreductions. 10. Reactions of singlet oxygen. Chemiluminiscence. Solid state photochemistry. 11. Experimental photochemistry. Safety procedures. 12. Photochemistry and photobiology.
- Literature
- KLÁN, Petr. Organická fotochemie (Organic Photochemistry). 1. vydání. Brno: Vydavatelství MU, 2001, 121 pp. ISBN 80-210-2526-3. info
- Assessment methods (in Czech)
- Test v anglickém jazyce a ústní zkouška v českém jazyce.
- Language of instruction
- English
- Follow-Up Courses
- Further Comments
- The course is taught annually.
The course is taught: every week. - Teacher's information
- http://www.sci.muni.cz/photochemistry/
- Enrolment Statistics (Autumn 2006, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2006/C8780