PřF:C5020 Chemical Structure - Course Information
C5020 Chemical Structure
Faculty of ScienceAutumn 2007 - for the purpose of the accreditation
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Pavel Brož, Ph.D. (lecturer)
prof. RNDr. Miroslav Holík, CSc. (lecturer) - Guaranteed by
- prof. RNDr. Miroslav Holík, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science - Prerequisites
- ( C3401 Physical Chemistry I && C4402 Physical Chemistry II )||( C3140 Physical Chemistry I && C4020 Advanced Physical Chemistry )|| C4660 Basic Physical Chemistry
Passing out the lecture Physical Chemistry I and II. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 17 fields of study the course is directly associated with, display
- Course objectives
- Chemical structure - interaction of the radiation with the matter. Absorption of the gama radiation and electrons (mass spectrometry). Electron as a wave (electron diffraction), X-ray diffraction. Absorption of X-ray and UV radiation - photoelectron spectroscopy. Absorption of UV and visible light - electron spectroscopy, luminescence. Dispersion of UV radiation - Raman spectroscopy, polarization of dielectric. Absorption of IR and MW radiation. Dipole moment, molar refraction, birefringence, Kerr effect. Optical rotation, optical rotational dispersion, Cotton effect, circular dichroism. Magnetic properties of the matter, behaviour of the particles in magnatic field. Electron paramagnetic resonance. Nuclear magnetic resonance; screening and spin-spin coupling; quantitative and structural analysis.
- Syllabus
- 1. Electron diffraction and rtg. irradiation. Electrons particles and irradiation. Quantum numbers. Diffraction on the set of planes (Huygens and Ewald constructions). Direct and reciprocal lattice. Interference (Laue and Bragg method). Radial distribution function. 2. Absorption of electrons and gamma irradiation. Mass spectrometry (ionization methods, resolution, detection, group of molecular peaks, main types of fragmentation). Moessbauer spectroscopy (isotopic shift. quadrupolar splitting). 3. Photoelectron spectroscopy. Absorption of rtg. photon (XPS, ESCA), absorption of electrons (Auger) and UV quanta (UPS). Rtg. fluorescence. 4. Absorption of UV and visible light. Electron spectroscopy (Franck-Condom principle). Vibration and rotation structure of energy diagrams. Thermal relaxation, fluorescence, phosphorescence (types of electron transitions, particle in one-dimensional potential well, chromophores, auxochromes, external and internal effects on shifts of absorption lines. Use of electron spectroscopy in structural and quantitative analysis (Lambert-Beer law). 5. Molecules in electric field (polarizability, induced and permanent dipole moment, permitivity of dielectricum). Induced and orientation polarization. Clasius-Mossoti and Debye equations. Dipole moments (Halverstadt-Kumler and Gugenheim-Smith methods). Index of refraction and molar refraction. 6. Electrons in electric field of light wave. Rayleigh and Raman dispersion. Raman spectroscopy (anisotropy of polarizability, depolarization, Stokes and anti-Stokes transitions, vibration and rotational Raman spectra). 7. Absorption of IR an MW irradiation. IR vibrations (harmonic and anharmonic oscillator, energy on vibration levels, types of normal vibrations). Transfers among vibration energy levels. NIR in qualitative and quantitative analysis. Vibration-rotation and rotation spectra (elastic and non-elastic rotator, rotation-distortion constant). 8. Transfer of the light through material. Diffraction of light (Snellius law). Measurement of index of diffraction, its dependence on wavelength and density. Effect of the electric field (Kerr effect, Kerr factor, Kerr constant and its use in structural analysis). 9. Optical activity. Specific rotation, dependence on wavelength, Drude equation, Cotton effect, optical rotation dispersion, circular bicroism. Optical rotation and structure (absolute value, octant rule). 10. Molecules in magnetic field. Magnetic induction, magnetization, anisotropy of magnetic susceptibility. Dielectrics, paramagnetics, ferromagnetics (Curie law, Weiss correction, Curie temperature). 11. Electron paramagnetic resonance spectroscopy. Electron in magnetic field, resonance condition, Lande g-factor, hyperfine splitting, multiplicity of signals. 12. Nuclear magnetic resonance spectroscopy. Nuclei in magnetic field, nuclear spin, quantum numbers, condition of resonance, coupling constant (substitution, sterical and solvatation components).Coupling constant, stepwise reduction of spin multiplets. Number of NMR signals and symmetry of molecule. Intensity of signals and its use in quantitative analysis.
- Literature
- ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, xvi, 1014. ISBN 0198501013. info
- Assessment methods (in Czech)
- Ústní zkouška, pedpokladem je zápoet ze semináe.
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught every week. - Listed among pre-requisites of other courses
- Enrolment Statistics (Autumn 2007 - for the purpose of the accreditation, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2007-forthepurposeoftheaccreditation/C5020