PřF:C7860 Plant Biochemistry - Course Information
C7860 Plant Biochemistry
Faculty of ScienceAutumn 2010
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- prof. Mgr. Tomáš Kašparovský, Ph.D. (lecturer)
doc. Mgr. Jan Lochman, Ph.D. (lecturer) - Guaranteed by
- prof. RNDr. Zdeněk Glatz, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Thu 9:00–10:50 B11/306
- Prerequisites
- C4182 Biochemistry II || C3580 Biochemistry || C5720 Biochemistry
basic lecture of Biochemistry - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 11 fields of study the course is directly associated with, display
- Course objectives
- An advanced lecture. At its end At the end students should have knowledges about - Basic components of plant cells. Plant metabolims and storage of energy. Structure and function of phytohormons. Defence mechanims in plants (secondary metabolites, phytoalexins, elicitins). Use and function of herbicides. Plants as source of energy and biomass.
- Syllabus
- 1. Isolation of vegetal cell components, markers. 2. Vegetal cell wall components (composition, structure, biosynthesis, microfibrillar polysaccharides, amorphous polysaccharides, lignin, lignification), 3. Role of plasmalemma, plama membrane ATPase, tonoplast ATPase, membrane transport. Respiratory chain of plant mitochondria, photorespiration. 4. Degradation of polysaccharides (amylases, D-enzyme, R-enzyme, phosphorylases), degradation of polysaccharides in fungi. Cellulases, ligninases. 5. Glyoxalic acid cycle and tricarboxylic acids cycle Degradation of fats (beta-oxidation of fatty acids), degradation of stock proteins. 6. Nitrogen metabolism in plants, nitrogen fixation, assimilation of ammonia, glutamatedehydrogenase, 7. Glutaminesynthetase, nitrate and nitrite reductase. 8. CO2 assimilation, C4 plants, C6 plants. 9. Phytohormones, structure, synthesis and molecular mecanism (auxins, giberellic acids, cytokinins, ethylen). 10. Photosynthesis - photosynthetic pigments: chlorophylls, carotenoids, photochemistry, 11. Dark phase of photosynthesis, inhibitors. Biosynthesis of oligosaccharides, polysaccharides and glycosides. 12. Allelopathy, phytotoxins, alkaloids, phytoalexins, regulation of their synthesis and teir mechanism in the protection of plants. Pharmacological use of plant metabolites: insecticides, treatment of cancer, malaria, AIDS. 13. Plants as source of material and energy. Chemical methodes, biochemical methods, methanogenesis. 14. Plants and pharmacology
- Literature
- BUCHANAN, Bob, Wilhelm GRUISSEM and Russell JONES. Biochemistry & molecular biology of plants. Rockville, Maryland: American society of plant physiologists, 2000, 1367 pp. ISBN 0-943088-39-9. info
- Heldt- Plant Biochemistry and Molecular Biology (Acad Press, Elsevier), 3rd Edition, 2005
- Teaching methods
- Lectures
- Assessment methods
- Advance course, written exam
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
- Enrolment Statistics (Autumn 2010, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2010/C7860