PřF:C3050 Organic Chemistry II - Course Information
C3050 Organic Chemistry II
Faculty of ScienceAutumn 2012
- Extent and Intensity
- 4/0/0. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Milan Potáček, CSc. (lecturer)
RNDr. Slávka Janků, Ph.D. (seminar tutor)
Mgr. Jaromír Literák, Ph.D. (seminar tutor)
doc. Mgr. Jakub Švenda, PhD. (seminar tutor) - Guaranteed by
- prof. RNDr. Milan Potáček, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science - Timetable
- Wed 8:00–9:50 B11/132, Fri 8:00–9:50 B11/132
- Prerequisites
- C2021 Organic Chemistry I
Knowledge of General Chemistry and Organic Chemistry I - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Analytical Chemist - Manager of Chemical Laboratory (programme PřF, B-CH)
- Biophysical Chemistry (programme PřF, B-CH)
- Chemistry (programme PřF, B-CH)
- Chemistry with a view to Education (programme PřF, B-CH)
- Course objectives
- Organic chemistry of hydrocarbon derivatives. Analysis of functional groups structure and their reactivity, influence of the neighbouring skeleton upon their reactivity and opposite influence of the certain functional group upon the hydrocarbon skeleton. Sacharides, steroides and heterocyclic compounds in an overview. At the end of the course the student should understand reactivity of various functional groups and their influence upon the hydrocarbon skeleton with the final aim to deduce chemical behaviour of a complex molecule, which might be a centre of the interest.
- Syllabus
- Organic Chemistry II Organic Chemistry of Hydrocarbons Derivatives Overview of various structures of organic molecules and their reactivity based on described structures including simple heterocyclic compounds. Basic mechanism of the main types of reactions. Methods of preparation of the main classes of derivatives is given. 1. Halogen derivatives. Influence of the carbon skeleton on the reactivity of halogen derivative. Mechanism of nucleophilic substitution, S$_N$1, S$_N$2 mechanism and their sterochemical course. 2. Elimination reactions, mechanism E1, E2, E1cB and their stereochemical course. Substitution versus elimination. Alfa elimination reactions. 3. Hydroxy derivatives - alcohols and phenols. Reactivity of the hydroxy group, acidity and an influence of the carbon skeleton on it. Substitution and elimination reactions. Reactions on the carbon rest of the alcohol molecule. Oxidation reactions. Polyhydroxy derivatives. 4. Quinones, structure and chemical properties. Ethers, structure and nomenclature. Physical properties in comparison with alcohols. Typical chemical reactions of ethers(C-O bond cleavage, peroxides formation). Epoxides and cyclic ethers, their properties. Crown ethers and their application. 5. Thioles and sulfides. Comparison with the oxygen derivatives. Products of oxidation - sulfinic and sulfonic acids, sulfoxides and sulfones. Sulfonic acids and their derivatives, their preparation and reactivity, application. 6.Inorganic acid esters, their preparation and application. Amino derivatives and nomenclature. The basic chemical properties. Hofmann rearrangement. Reactivity of amines with nitrous acid. Diazotization and diazonium salts, coupling reactions. Amine oxides and their application. Enamines. 7. Quaternary amonium salts. Hofmann elimination. Reactions with phase transfer catalysis. Diazocompounds.Diazoalkanes, diazoesters, diazoketones preparation and reactivity. Arndt-Eistert-Wolf rearrangement. Azides (Curtius and Schmidt rearrangement). 8. Nitro compounds. Structure and reactivity. Influence of the nitro group on the carbon skeleton. Preparation of nitro compounds. Ambident ions. Reduction of nitro compounds. Azo, azoxy and hydrazo compounds. Nitriles and isonitriles. Structure and reactivity and preparation. Hydrolysis of nitriles. Isonitrile test. 9. Organo metallic compounds. Nomenclature. Relation between the metal and the chemical properties. Representatives of organometallic compounds, their reactivity and application in organic synthesis. Preparation. 10. Carbonyl derivatives. The phenomenon of carbonyl group. Aldehydes and ketones, nucleophilic addition reactions (reaction with oxygen, nitrogen, carbon and other nucleophiles. Influence of the carbonyl group on the carbon skeleton and application in organic synthesis. Summary of the name reactions. Oxidation and reduction. 11. Carbohydrates (aldoses, ketoses, trioses, tetroses, pentoses, hexoses), nomenclature. Mutarotation and cyclic form. Reactivity of the carbonyl and hydroxy groups. Products of oxidation and reduction, amino and deoxy derivatives. Disacharides (their structure and reductive properties). Polysacharides - homo and heteropolysacharides, representatives. Cellulose, its preparation and modification, application. Starch. 12. Carboxylic acids, their structure, representatives, chemical properties. Influence of the carbon rest on the acidity. Esterification. Function derivatives of carboxylic acids (esters, halogen derivatives, amides, anhydrides). Preparation and comparison of their properties. Application in organic synthesis. Lipids, their structure, properties. Waxes. Substituted derivatives of carboxylic acids (hydroxyacids,lactones, lactides, aminoacids, lactams, halogenacids, ketoacids). 13.Derivatives of carbonic acid, classification, their reactivity. Steroids. The structure of steroids, stereochemical aspects, numbering and nomenclature. Steroles (cholesterol), sex hormones (male - androsterone, testosterone, female - estrogens, progesterone), adrenocortical hormones, bile acids, cardiac poisons. Difference in their structure and activity. 14.Heterocyclic compounds. Structure and systematic nomenclature of heterocyclic compounds. Relation between the electronic structure and the chemical behaviour. Pyrrole, thiophene, furan, comparison of their chemical properties. Structure of pyrrole and bile pigments. Indole, indoxyl, indigo. Imidazole, pyrazole, thiazole, oxazole (the main chemical characteristic). Pyridine, structure and chemical properties. Pyridinium salts and pyridinium N-oxide. Quinoline and isoquinoline. Pyrylium salts, flavylium salts, coumarin and chromone, flavones - structure and their occuarance. Pyrazine, pyrimidine (bases of nucleic acids,pyridazine.Purines (the main representatives, bases of nucleic acids).Pterine (structure).
- Literature
- MCMURRY, John. Organická chemie. Translated by Jaroslav Jonas. Vyd. 1. Praha: Vysoká škola chemicko-technologická v Praze, 2007, 1 sv. ISBN 9788070806371. info
- J. Clayden, N. Greeves, S. Warren, P. Wothers. Organic Chemistry. Oxford University Press 2001
- MCMURRY, John. Organic chemistry. 4th ed. Pacific Grove: Brooks/Cole publishing company, 1995, 1243 s. +. ISBN 0-534-23832-7. info
- SOLOMONS, T. W. Graham. Organic chemistry. 6th ed. New York: John Wiley & Sons, 1996, xxvii, 121. ISBN 0471013420. info
- HRNČIAR, Pavol. Organická chémia. 3., preprac. vyd. Bratislava: Slovenské pedagogické nakladateľstvo, 1990, 708 s. ISBN 8008000287. info
- ČERVINKA, Otakar. Chemie organických sloučenin. 1. vyd. Praha: Státní nakladatelství technické literatury, 1985, 1131 s. info
- ČERVINKA, Otakar. Chemie organických sloučenin. Vyd. 1. Praha: Státní nakladatelství technické literatury, 1987, 1052 s. info
- POTÁČEK, Milan, Ctibor MAZAL and Slávka JANKŮ. Řešené příklady z organické chemie. 1st ed. Brno: Masarykova univerzita v Brně, 2000, 243 pp. ISBN 80-210-2274-4. info
- NOVÁČEK, Eduard and Milan POTÁČEK. Laboratorní technika ke cvičení z metod organické chemie. Edited by Slávka Janků. 1. vyd. Brno: Masarykova univerzita, 1997, 91 s. ISBN 8021015004. info
- Teaching methods
- lectures with a demontration of the taught topic at chosen examples
- Assessment methods
- The course is represented by a set of lectures and seminars where various phenomenons are demonstrated on chosen examples. The course is closed by a written test and an oral examination.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- C2700 Principles of Organic Chemistry
(C1601||C1601bf||C1020) && !C2021 && !C3022 && !C3050 && !NOWANY(C2021,C3022,C3050) - C3055 Organic Chemistry II - Seminar
NOW(C3050)||NOW(C3022) - C4120 Macromolecular Chemistry
(C3022 && C3040)||C3050 - C4450 Organic Chemistry III - synthesis
(C3022||C3050)&&C5500&&C7410 - C4455 Organic Chemistry III - synthesis - seminar
(C3022||C3050) && NOW(C4450) - C4465 Advanced Organic Synthesis
(C3022||C3050||C4450) - C7410 Structure and Reactivity
((C1020&&C2021&&(C3022||C3050)&&(C4660||C3140||C3401)&&(C4020||C4402))&&NOW(C7415))||souhlas - C8780 Photochemistry: From Concepts to Practice
C1020&&C2021&&C3050&&C4660&&C4020
- C2700 Principles of Organic Chemistry
- Enrolment Statistics (Autumn 2012, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2012/C3050