PřF:F1422 Computing practice 1 - Course Information
F1422 Computing practice 1
Faculty of ScienceAutumn 2016
- Extent and Intensity
- 0/3. 3 credit(s). Type of Completion: graded credit.
- Teacher(s)
- Mgr. Ing. arch. Petr Kurfürst, Ph.D. (seminar tutor)
- Guaranteed by
- prof. RNDr. Jana Musilová, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: Mgr. Ing. arch. Petr Kurfürst, Ph.D.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science - Timetable of Seminar Groups
- F1422/01: Mon 19. 9. to Sun 18. 12. Tue 15:00–17:50 F4,03017
F1422/02: Mon 19. 9. to Sun 18. 12. Wed 12:00–14:50 F3,03015 - Prerequisites
- It is recommended to master basic operations of differential and integral calculus on the secondary school level.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Obtain routine numerical skills necessary for bachelor course of general physics and basic biophysics.
- Syllabus
- 1. Differentiation and integration of real functions of single variable, practicing of basic operations.
- 2. Fundamentals of vector algebra in R-2 and R-3: vectors, vector calculus, scalar and vector product and their geometrical and physical interpretation, vector calculus in bases.
- 3. Fundamentals of vector algebra in R-2 a R-3: transformation rules.
- 4. Ordinary differential equations: separation of variables, first-order linear differential equations, physical applications (nuclear fission, absorption of radiation).
- 5. Ordinary differential equations: linear equations of the second and higher orders with constant coefficients, physical applications (equations of a particle motion, harmonic oscillator, damped and forced oscillations).
- 6. Simple systems of equations of motion.
- 7. Curvilinear coordinates.
- 8. Line integral: curves, parameterization, line integral of the first type and its physical applications (length, mass, center of mass and moment of inertia of the curve), line integral of the second type and its physical applications (work along the curve).
- 9. Scalar functions of two and three variables: partial derivatives, directional derivatives, gradient.
- 10. Scalar functions of two and three variables: total differential, existence of potential.
- 11. Vector functions of two and three variables: definitions, Jacobi matrix, integral curves of the vector field (streamlines, field lines, ... ), differential operators.
- 12. Combinatorics and fundamentals of statistical distribution. Random variables: the probability, discrete and continuous distributions, characteristics of the distribution (mean, standard deviation, median, ... ), distribution function.
- 13. Random variables - applications: fundamentals of measurement results processing, physical problems.
- Literature
- recommended literature
- KURFÜRST, Petr. Početní praktikum. 1. vyd. Brno: Masarykova univerzita, 2017. Elportál. ISSN 1802-128X. url html PURL info
- KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
- MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika pro porozumění i praxi I (Mathematics for understanding and praxis). Brno: VUTIUM, 2006, 281 pp. Vysokoškolské učebnice. ISBN 80-214-2914-3. info
- ARFKEN, George B. and Hans-Jurgen WEBER. Mathematical methods for physicists. 6th ed. Amsterdam: Elsevier, 2005, xii, 1182. ISBN 0120598760. info
- Teaching methods
- Seminar based on the solution of typical problems.
- Assessment methods
- Based on 'Studijní a zkušební řád Masarykovy univerzity', chapter 9, section 2 the attendance on schooling is required. The absence can be compensated by elaboration of additional exercise from the set of examples in the textbook "Kurfürst Petr, Početní praktikum, 2015", published on the website of the course, selected individually by the teacher. Deadline for additional homeworks is 10.2.2017, however, better is to hand them over continually. Students harvest points for lecture activity. Each lecture activity is evaluated with one point for correct and complete solution of any of pre-assigned example. Subject matter is divided into three particular tests, which are written during the semester. For each test student can obtain a maximum of 10 points. Student write fourth test from whole semester, if achieve less then 15 points. Time limit for each test is 60 minutes. Students of combined form also write three particular tests. Final grade will be determinated from sum of all points gained by each student during the semester, the methodic of grading is published on course website.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- http://physics.muni.cz/~petrk/
- Enrolment Statistics (Autumn 2016, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2016/F1422