PřF:C8845 Theoretical Aspects of Analyti - Course Information
C8845 Theoretical Aspects of Analytical Chemistry
Faculty of Scienceautumn 2017
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), graded credit.
- Teacher(s)
- prof. RNDr. Přemysl Lubal, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Přemysl Lubal, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Přemysl Lubal, Ph.D.
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science - Prerequisites
- Prerequisities are basic courses Physical chemistry I (C3140), Physical chemistry II (C4020), Analytical chemistry I (C3100), Analytical chemistry II (C4050).
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 57 fields of study the course is directly associated with, display
- Course objectives
- The course is focused on basic aspects of analytical important chemical reactions in solution from thermodynamic as well as kinetic point of view. The main task is to demonstrate to students the theoretical background used in analytical chemistry in order to be able to solve and optimize the newly developed analytical method for wide application in reserch and practice.
- Syllabus
- 1. Introduction to subject.
- Theoretical background for moedelling of chemical processes in solutions.
- 2. Description of chemical processes in solution (acidobasic, preciptiation, complexing and redox equlibria). Influence of experimental conditions on thermodynamic data (temperature, ionic strength, pressure, etc.)
- 3. Equilibria - interphase liquid - gas, solution-solid phase. Equilibria in polyelectrolyte solution. Metal ions in solutions.
- 4-5. Experimental methods for determination of equlibrium constants and their evaluation (graphical and computer analysis).
- 6. Application of thermodynamic data for modelling. Demonstration of thermodynamic databases. Methods for calculation of equilibrium concentrations - software demosntration for calculation. Application analytical chemistry - optimalization of analytical methods.
- 7. Demonstration of chemical processes in solution from chemical point of view. Influence of experimental conditions on kinetic data (temperature, ionic strength, pressure, etc.)
- 8. Experimental methods for determination of rate constants and their evaluation (graphical and computer analysis).
- 9. Application of kinetic dat for modelling. Methods for calculation of equilibrium concentrations - software demosntration for calculation. Application analytical chemistry.
- Literature
- ŠŮCHA, Ladislav and Stanislav KOTRLÝ. Teoretické základy analytické chemie. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1971, 328 s. URL info
- KOTRLÝ, Stanislav and Ladislav ŠŮCHA. Chemické rovnováhy v analytické chemii : tabulky a diagramy. Vyd. l. Praha: SNTL - Nakladatelství technické literatury, 1988, 386 s. info
- STUMM, Werner and James J. MORGAN. Aquatic chemistry : chemical equilibria and rates in natural waters. New York: John Wiley & Sons, 1995, xvi, 1022. ISBN 0-471-51184-6-. info
- Grenthe, I., Puigdomenech, I. (Eds.), Modelling in Aquatic Chemistry, OECD NEA Paris 1997.
- PITTER, Pavel. Hydrochemie [Pitter, 1999]. 3. přeprac. vyd. Praha: Vydavatelství VŠCHT, 1999, 568 s. ISBN 80-03-00525-62. info
- Teaching methods
- Lectures
- Assessment methods
- combination of lecture with example demonstration on PC oral exam
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
- Enrolment Statistics (autumn 2017, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2017/C8845