PřF:Bi2011 Theor. Fundam. Comp. Sci. - Course Information
Bi2011 Theoretical Fundamentals of Computer Science
Faculty of ScienceAutumn 2019
- Extent and Intensity
- 2/2/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- RNDr. Miroslav Kubásek, Ph.D. (lecturer)
RNDr. Martin Komenda, Ph.D., MBA (lecturer) - Guaranteed by
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Faculty of Science
Contact Person: RNDr. Miroslav Kubásek, Ph.D.
Supplier department: RECETOX – Faculty of Science - Timetable
- Thu 13:00–16:50 F01B1/709
- Prerequisites
- None, it is a basic course.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Epidemiology and modeling (programme PřF, B-MBB)
- Mathematical Biology (programme PřF, B-EXB)
- Course objectives
- Main objectives can be summarized as follows:
to understand the fundamentals of logic, graphs, automatons and formal languages;
to expand student abstraction. - Learning outcomes
- Studend will by able to: understand the fundamentals of logic; graphs; automatons and formal languages.
- Syllabus
- Number systems
- Propositional calculus, Boolean algebra
- Predicate calculus
- Basic concepts from information theory
- Eulerian and hamiltonian graphs
- Skeleton graph, searching for optimal route
- Finite automata
- Stack automata
- Languages and grammars, Chomsky hierarchy
- Relationship of finite automata and regular languages
- Relationship of stack automata and context-free languages
- Basic methods of syntactic analysis for context-free languages
- Linear bounded automata
- Turing machines
- Literature
- Fuchs, E.: Diskrétní matematika a Teorie množin pro učitele (CD-ROM). Masarykova univerzita, Brno, 2000.
- Fuchs, E.: Diskrétní matematika pro učitele. Masarykova univerzita, Brno, 2001.
- Kolář, J., Štěpánková, O., Chytil, M.: Logika, algebra, grafy. SNTL, Praha, 1989.
- Molnár, L', Češka, M., Melichar, B.: Gramatiky a jazyky. Alfa, Bratislava, 1987.
- Štěpán, J.: Formální logika. FIN, Olomouc, 1995.
- Teaching methods
- lectures, examples
- Assessment methods
- Lectures, class discussion;
Final written exam. - Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- Enrolment Statistics (Autumn 2019, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2019/Bi2011