M3521 Geometry 2

Faculty of Science
Autumn 2019
Extent and Intensity
2/2/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Josef Janyška, DSc. (lecturer)
Mgr. Kristýna Bisová (seminar tutor)
Bc. Karolína Klempířová (seminar tutor)
Guaranteed by
prof. RNDr. Josef Janyška, DSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science
Timetable
Thu 8:00–9:50 M2,01021
  • Timetable of Seminar Groups:
M3521/01: Tue 16:00–17:50 M5,01013, K. Klempířová
M3521/02: Tue 18:00–19:50 M5,01013, K. Bisová
Prerequisites
KREDITY_MIN(30)
Knowledge of M1500 Algebra 1 and M2500 Algebra 2.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 7 fields of study the course is directly associated with, display
Course objectives
The goals of the course are:
- analytical theory of linear geometric objectss in affine and euclidean spaces of any dimension with emphasis on plane and three-dimensional space;
- mastering of computer techniques for solution of positional and metric tasks;
- support spatial imagination of students.
Learning outcomes
Student will be able to:
- use the analytical method to solve the positional problems in the affine space of any dimension with emphasis on dimensions 2 and 3;
- use the analytical method to solve metric problems in the euklid point space of any dimension with emphasis on dimensions 2 and 3.
Syllabus
  • Affine space:
  • - dimension;
  • - affine frame and affine coordinates;
  • subspaces of the affine space and their expressions;
  • - subspaces positions.
  • Euclidean point space:
  • - the Cartesian frame and the Cartesian coordinates;
  • - distance of subspaces;
  • - perpendicular subspaces and subspaces deviations.
Literature
    recommended literature
  • SEKANINA, Milan. Geometrie. 1. vyd. Praha: Státní pedagogické nakladatelství, 1986, 197 s. URL info
  • SEKANINA, Milan. Geometrie. 1. vyd. Praha: Státní pedagogické nakladatelství, 1988, 307 s. info
  • HORÁK, Pavel and Josef JANYŠKA. Analytická geometrie. Brno: Masarykova univerzita v Brně, 1997, 151 s. ISBN 80-210-1623-X. info
    not specified
  • ŠMARDA, Bohumil. Analytická geometrie. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1978, 157 s. info
Teaching methods
Lecture with a seminar.
Assessment methods
Examination consists of two parts: written and oral.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018.
  • Enrolment Statistics (recent)
  • Permalink: https://is.muni.cz/course/sci/autumn2019/M3521