PřF:F1040 Mechanics and molecular physic - Course Information
F1040 Mechanics and molecular physics
Faculty of ScienceAutumn 2020
- Extent and Intensity
- 3/2/0. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Ing. Radek Kalousek, Ph.D. (lecturer)
Mgr. Jiří Bartoš, PhD. (seminar tutor) - Guaranteed by
- prof. RNDr. Jana Musilová, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: Mgr. Jiří Bartoš, PhD.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science - Timetable
- Tue 9:00–11:50 F2 6/2012
- Timetable of Seminar Groups:
F1040/02: Wed 10:00–11:50 F4,03017 - Prerequisites
- ! F1030 Mechanics
Requirements of Mechanics and molecular physics as one of disciplines of the common part of leaving examination of Physics. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Mechanics and molecular physics is the introductory discipline of most university courses of general physics. Such its role is determined by its illustrativity and accessibility to human sensuous perceiving. The discipline is devoted to students of physics and physics teaching. The two main goals are followed:
* To present to students the problems and methods of classical mechanics on the university course level, including the adequate calculus of mathematical analysis and algebra.
* By the practical teaching of such illustrative and accessible discipline, including the demonstration experiments, to introduce students into procedures and methods of physics, which form the physical thinking of a future specialists, scientists and teachers. - Learning outcomes
- Absolving the course a student obtains following abilities and skills:
* Basic knowledge of the system of physics as a discipline.
* Ability to identify fundamental elements of a physical discipline: introductory experiment, principles of the physical discipline(axioms), derived assertions (physical laws), verification experiment.
* The role of mathematics in a physical discipline.
* Ability to apply mathematical tools to problems of physics.
* Ability to obtain derived assertions (physical laws) from principles of classical mechanics(e.g. impulse theorems or conservation laws from Newton laws (axioms), etc.)
* Ability to construct simplified models of mechanical systems.
* Ability to validate an approximate character of models and methods in mechanics from both the physical and mathematical point of view.
* Ability to solve problems and examples of mechanics of classical particles and their systems as well as continuum at the level of basic university course of general physics.
* Ability to interpret fundamental experiments in mechanics. - Syllabus
- 1. Experiment in physics.
- 2. Quantities characterizing the motion of bodies.
- 3. reference frames.
- 4. Non-relativistic particle dynamics: Fundamental laws of newtonian mechanics.
- 5. Equations of motion and their solutions.
- 6. Basic ideas of relativistic mechanics.
- 7. Work and mechanical energy, mechanics of two-particle isolated system.
- 8. Mechanics of particle systems: Momentum and angular momentum, momentum laws and conservation laws.
- 9. Motion of rigid bodies.
- 10. Mechanics of continuous media: Equilibrium of a liquid. 11. Motion of an ideal and viscous liquid.
- 12. Macroscopic systems-thermodynamical approach: Macro-state of a system, equilibrium states and stationary processes, thermodynamical laws, basic ideas of non-equilibrium thermodynamics.
- 13. Macroscopic systems - statistical approach: Micro-state of a system, distribution function, entropy.
- 14. Thermal properties of matter. Phase transitions.
- Literature
- required literature
- MUSILOVÁ, Jana and Pavla MUSILOVÁ. Matematika pro porozumění i praxi I (Mathematics for understanding and praxis). Brno: VUTIUM, 2006, 281 pp. Vysokoškolské učebnice. ISBN 80-214-2914-3. info
- Teaching methods
- Lectures: theoretical explanation of basic concepts and laws of mechanics, combined with demonstration experiments accompanied by correct physical interpretation. Consultative exercises: solving problems for understanding of basic concepts and laws, contains also more complex problems
- Assessment methods
- Teaching: lectures, consultative exercises Exam: written test (two parts: (a) solving problems, (b) test) and oral exam.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- F3100 Oscillations, waves, optics
(F1030||F1040) && (!F3060) - F3101 Oscillations, waves, optics
(F1030||F1040) && (!F3060) - F4061 Microphysics plus
(F1030 && F1050) || F1040 - F4090 Electrodynamics and theory of relativity
(F1030&&F2050)||(F1040&&F2070) - F4100 Introduction to Microphysics
((F1030||F1040)&&(F2050||F2070)) && (!F4050) && (!F4050E) && (!F4100E) && !NOWANY(F4100E,F4050E,F4050) - F4100E Introduction to Microphysics
((F1030||F1040)&&(F2050||F2070)) && (!F4050) && (!F4050E) && (!F4100) && !NOWANY(F4050,F4050E,F4100) - F4120 Theoretical mechanics
F1030||F1040||F2060
- F3100 Oscillations, waves, optics
- Enrolment Statistics (Autumn 2020, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2020/F1040