PřF:S2004 Biomolecular interactions - Course Information
S2004 Methods for characterization of biomolecular interactions – classical versus modern
Faculty of ScienceAutumn 2020
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- Mgr. Josef Houser, Ph.D. (lecturer)
Mgr. Monika Kubíčková, Ph.D. (lecturer)
prof. RNDr. Michaela Wimmerová, Ph.D. (lecturer) - Guaranteed by
- prof. RNDr. Michaela Wimmerová, Ph.D.
National Centre for Biomolecular Research – Faculty of Science
Supplier department: National Centre for Biomolecular Research – Faculty of Science - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The students will learn about the aspects of biomolecular interactions, their significance and biological relevance, and they will get an overview of both traditional and state-of-art methods for the study of biomolecular interactions.
- Learning outcomes
- At the end of the course students should be able to: understand and explain principles of thermodynamics and kinetics of biomolecular interactions; understand thermodynamics of binding, interpret binding curves make reasoned decisions about selecting a proper method for particular applications
- Syllabus
- 1. Introduction to Biomolecular interactions (significance, biological relevance, equilibrium, association and dissociation constants, kinetics). Types of interactions (hydrophobic, coulombic, hydrogen bonds, van der Waals forces). 2. Classical versus modern methodology Classical methods for characterization of interactions (equilibrium dialysis, frontal chromatography). Direct measurement of complex formation (change in absorbance, fluorescence intensity, fluorescence polarization). Surface plasmon resonance (theoretical background, comparison with ELISA methods). 3. Thermodynamics of protein-ligand interactions Thermodynamics of binding (Gibbs free energy, enthalpy, entropy). Macroscopic and microscopic views. The pH and temperature dependence of complex formation. Entropy-enthalpy compensation. Isothermal titration calorimetry (theoretical background, measurement of high-affinity and low-affinity interactions. displacement measurement, single-injection measurement, comparison with other methods, limits of ITC, possible problems. 4. Oligomerization and protein-protein interactions. Protein stoichiometry, stereochemistry. Protein folding (hydrophobic effect, hydrophilic interactions, hydrogen bonds, electrostatic forces, water molecules). Subunit-subunit interactions (electrostatic and shape complementarity). Protein-protein recognition sites. Determination of oligomerization (cross-linking, analytical ultracentrifugation). 5. Microscale thermophoresis (MST) – theoretical background, labelling and assay development, determination of Kd and stoichiometry, applications 6. Characterization of interactions on cell level. Possibility of whole cell assay within SPR and ITC. Modeling of native conditions (sensor chip versus in-solution measurement). Haemagglutination. 7. Importance of sample preparation („garbage in, garbage out“), methods for sample quality determination.
- Literature
- recommended literature
- Protein-protein interactions : methods and applications. Edited by Haian Fu. Totowa, N.J.: Humana Press, 2004, xvi, 532. ISBN 1588291200. info
- Protein-ligand interactions : hydrodynamics and calorimetry : a practical approach. Edited by Stephen E. Harding - Babur Z. Chowdhry. 1st pub. Oxford: Oxford University Press, 2001, xxiv, 330. ISBN 0-19-963749-0. info
- Protein-ligand interactions : structure and spectroscopy : a practical approach. Edited by S. E. Harding - Babur Z. Chowdhry. 1st pub. Oxford: Oxford University Press, 2001, xxvi, 436. ISBN 0199637474. info
- Teaching methods
- Intensive theoretical course (lectures and discussions).
- Assessment methods
- in-term assessment, written on-line test
- Language of instruction
- English
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: in blocks.
Note related to how often the course is taught: January 10-13, 2017.
General note: in blocks, January 10-13, 2017. - Listed among pre-requisites of other courses
- Teacher's information
- The course is being taught in a block at the end of the semester - in the examination period.
- Enrolment Statistics (Autumn 2020, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2020/S2004