PřF:Bi1122c Statistics in R - pr. - Course Information
Bi1122c Statistical analysis of experimental data in R - practical course
Faculty of ScienceAutumn 2024
- Extent and Intensity
- 0/3/0. 3 credit(s). Type of Completion: z (credit).
In-person direct teaching - Teacher(s)
- Mgr. Petra Ovesná, Ph.D. (lecturer)
- Guaranteed by
- Mgr. Petra Ovesná, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: Mgr. Petra Ovesná, Ph.D.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Thu 15:00–17:50 B09/316
- Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- Physiology (programme PřF, N-EBZ)
- Immunology (programme PřF, N-EBZ)
- Developmental Biology (programme PřF, N-EBZ)
- Course objectives
- The aim of the practical exercises is to learn how to effectively use the R software to calculate statistical tests and models appropriate to a given experimental design, and to interpret the output of the models correctly.
- Learning outcomes
- Passing through this practical training, students should be able to: - devise the adequate design of experiment; - select appropriate statistical method for given biological experimental data and design; - analyze these data using R software; - present obtained result using reports, graphs and tables.
- Syllabus
- - Data collecting. Organization of data for statistical analysis in R.
- - Data import from spreadsheets. Variable types, statistical distributions, quantiles, hypotheses testing, null and alteantive hypothesis, I. and II. error type.
- - Experimental design, selecting of appropriate statistical method.
- - X2 test. F-test, t-test. One-way analysis of variance, homogeneity of variances, independence of residuals, data transformations, contrasts, a priori and post-hoc tests.
- - Multiple analysis of variance: factorial, nested, and block designs, repeated measures ANOVA; interaction, fixed effects and random effects models, mixed model.
- - Covariance analysis. Correlation analysis, Pearson, Spearman and partial correlation coefficient.
- - Regression analysis, linear and non-linear regression, multiple regression.
- Literature
- LEPŠ, Jan. Biostatistika. Vyd. 1. České Budějovice: Jihočeská universita, 1996, 165 s. ISBN 8070401540. info
- SOKAL, Robert R. and F. James ROHLF. Biometry : the principles and practice of statistics in biological research. 3rd ed. New York: W.H. Freeman and Company, 1995, xix, 887. ISBN 0716724111. info
- PEKÁR, Stanislav and Marek BRABEC. Moderní analýza biologických dat 1 - 1. díl. Zobecněné lineární modely v prostředí R. 2. přepracované vydání. Brno: Masarykova univerzita, 2020, 278 pp. ISBN 978-80-210-9622-6. info
- PEKÁR, Stanislav and Marek BRABEC. Moderní analýza biologických dat 2. Lineární modely s korelacemi v prostředí R (Modern Analysis of Biological Data 2. Linear Models with Correlations in R). 1st ed. Brno: Masarykova universita, 2012, 256 pp. ISBN 978-80-210-5812-5. info
- PEKÁR, Stanislav and Marek BRABEC. Moderní analýza biologických dat. 3. díl. Nelineární modely v prostředí R (Modern Analysis of Biological Data. 3. Non-Linear Models in R). 1st ed. Brno: Masarykova univerzita, 2019, 218 pp. ISBN 978-80-210-9277-8. info
- Teaching methods
- Practical lectures focused on theoretical aspects as well as practical applications. Practices in a computer room focused on training of regression modelling in R software.
- Assessment methods
- Knowledge will be evaluated using model examples calculated by students during the whole semester.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
Information on course enrolment limitations: Na předmět se vztahuje povinnost registrace; bez registrace může být znemožněn zápis předmětu!
- Enrolment Statistics (recent)
- Permalink: https://is.muni.cz/course/sci/autumn2024/Bi1122c