PřF:F6420 Diff. and int. calculus - Course Information
F6420 Differential and integral calculus on differential manifolds and its applications in physics
Faculty of ScienceSpring 2003
- Extent and Intensity
- 2/2/0. 4 credit(s). Type of Completion: z (credit).
- Teacher(s)
- prof. RNDr. Jana Musilová, CSc. (lecturer)
prof. RNDr. Jana Musilová, CSc. (seminar tutor)
Mgr. Pavla Musilová, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Aleš Lacina, CSc.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Jana Musilová, CSc. - Timetable of Seminar Groups
- F6420/01: No timetable has been entered into IS. P. Musilová
- Prerequisites
- F3063 Integration of forms
Differential and integral calculus of functions of multiple variables (Riemann integral), fundamentals of tensor algebra, integral of differential forms on euclidean spaces. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Biophysics (programme PřF, M-FY)
- Physics (programme PřF, M-FY)
- Physics (programme PřF, N-FY)
- Upper Secondary School Teacher Training in Physics (programme PdF, M-FY)
- Upper Secondary School Teacher Training in Physics (programme PřF, M-FY)
- Course objectives
- Předmět pokročilého kursu matematické analýzy pro fyziky, vhodný pro zájemce o problematiku matematické fyziky. Zabývá se především zobecněním pojmů diferenciálního a integrálního počtu na euklidovských prostorech na obecnější podkladové struktury -- diferencovatelné variety. Spolu s korektním výkladem matematických pojmů je důraz kladen na jejich aplikace v matematické fyzice.
- Syllabus
- 1. Fundaments of topology, topological manifolds, homeomorphisms. 2. Atlases, differential manifolds, diffeomorphisms. 3. Tensor algebra. 4. Tensors on manifolds, tensor bundles. 5. Induced diffeomorphisms on tensor bundles, Lie derivative. 6. Linear connection. 7. Physical applications-basis manifolds of GTR. 8. Integrals of differential forms on diferential manifolds, decomposition of unity, Stokes theorem. 9. Classical integral theorems, physical applications.
- Literature
- KRUPKA, Demeter. Úvod do analýzy na varietách. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1986, 96 s. info
- NAKAHARA, Mikio. Geometry, topology and physics. Bristol: Institute of physics publishing, 1990, xiii, 505. ISBN 0-85274-095-6. info
- SPIVAK, Michael. Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus. 1st ed. Perseus Pr., 1996. ISBN 0805390219. info
- Assessment methods (in Czech)
- Výuka: přednáška a cvičení. Zápočet: písemná kontrola.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught once in two years.
General note: S.
- Enrolment Statistics (Spring 2003, recent)
- Permalink: https://is.muni.cz/course/sci/spring2003/F6420