PřF:G8561 Systematic Mineralogy - Course Information
G8561 Systematic Mineralogy
Faculty of ScienceSpring 2005
- Extent and Intensity
- 1/1. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: graded credit.
- Teacher(s)
- prof. RNDr. Milan Novák, CSc. (lecturer)
doc. RNDr. Zdeněk Losos, CSc. (lecturer) - Guaranteed by
- doc. RNDr. Rostislav Melichar, Dr.
Department of Geological Sciences – Earth Sciences Section – Faculty of Science
Contact Person: Běla Hrbková - Timetable
- Thu 8:00–8:50 01006, Thu 9:00–9:50 01006
- Prerequisites
- ! G8560 Special mineralogy
This course is for students of the Magister program of Geology focused on mineralogy. Termination of the course Mineralogy II is required. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 11 student(s).
Current registration and enrolment status: enrolled: 0/11, only registered: 0/11, only registered with preference (fields directly associated with the programme): 0/11 - fields of study / plans the course is directly associated with
- Geology, Hydrogeology and Geochemistry (programme PřF, M-GE)
- Geology, Hydrogeology and Geochemistry (programme PřF, N-GE)
- Course objectives
- 1/ Crystal chemistry of elements, the closed packing in structures of metals, details of structures (S, graphite, diamond). Relations between structures and properties of elements. Description of elements-minerals, their minerogenesis and occurrences. 2/ Crystal chemistry of sulphides (tetrahedral structure type, octahedral structure type, combinated octahedral and tetrahedral structure type, other structure types. 3/ Compex structure type of sulphides. Minerogenesis of sulphides and occurrences. Sulphide thermomethers and barometers. 4/ Halides - their structures, crystal chemistry, minerogenesis, occurrences. 4/ Oxides. Tetrahedral structure type, octahedral structures. 6/ Combinated tetrahedral and octahedral structures (spinelides), cubic structure, other structure types. Minerogenesis and occurrences. Oxide thermomethers and barometers. 7/ Pyroxene group: crystal chemistry, classification and natural occurences of minerals in magmatic and metamorphic rocks Pt -stability fields, phase relations (diopside, hedenbergite, jadeite, enstatite, augite, omfacite). 8/ Amphibole group: crystal chemistry, classification and natural occurences of minerals in magmatic and metamorphic rocks Pt -stability fields, phase relations (tremolite, actinolite, antophylite, hornblend, alkali amphiboles ). 9/ Mica group: crystal chemistry, classification and natural occurences of minerals in magmatic and metamorphic rocks Pt -stability fields, phase relations (muskovit, biotit, lepidolite). 10/ Minerals Al2SiO5 (kyanite, sillimanite, andalusite) and Al-rich minerals (corundum, diaspore, kaolinite, pyrophylite), crystal chemistry, classification and natural occurences of minerals in magmatic and metamorphic rocks Pt - stability fields, phase relations. 11/ Zeolite group: crystal chemistry, classification and natural occurences of minerals in magmatic, metamorphic and hydrothermal rocks, Pt - stability fields, phase relations, using in industry (natrolite, heulandite, stilbite, laumontite, chabazite, analcim). 12/ Cyklosilicates (beryl, cordierite, sekaninaite) crystal chemistry, classification and natural occurences of minerals in magmatic and metamorphic rocks Pt - stability fields, phase relations.
- Syllabus
- 1/ Crystal chemistry of elements, the closed packing in structures of metals (Cu,Ag,Au,Fe), details of structures (S, graphite, diamond). Relations between structures and properties of elements. Description of elements - minerals, their minerogenesis and occurrences. 2/ Crystal chemistry of sulphides (tetrahedral structure type: sphalerite, wurtzite, chalcopyrite, bornite; octahedral structure type: galena, pyrrhotite, nickeline; combinated octahedral and tetrahedral structure type: pentlandite; other structure types: molybdenite, millerite, cinnabar, covellite, chalcocite, argentite; compex structure type: pyrite, marcasite, arsenopyrite, löllingite, cobaltite, skutterudite, stibnite, boulangerite, jamesonite, tetrahedrite, proustite, pyrargyrite, realgar, orpiment). Minerogenesis of sulphides and occurrences. Sulphide thermomethers and barometers. 3/ Halides - their structures, crystal chemistry, minerogenesis, occurrences. 4/ Oxides. Tetrahedral structure type: SiO2 group, zincite, periklas; octahedral structures: hematite, corundum, ilmenite, rutile, anatas, brookit, cassiterite, pyrolusite, columbite; combinated tetrahedral and octahedral structures: spinelides (magnetite, spinel, chromite, gahnite, franklinite), chrysoberyl; cubic structure: uraninite; other structure types: cuprite. Minerogenesis and occurrences. Oxide thermomethers and barometers. 5/ Pyroxene group: crystal chemistry, classification and natural occurences of minerals in magmatic and metamorphic rocks Pt -stability fields, phase relations (diopside, hedenbergite, jadeite, enstatite, augite, omfacite). 6/ Amphibole group: crystal chemistry, classification and natural occurences of minerals in magmatic and metamorphic rocks Pt -stability fields, phase relations (tremolite, actinolite, antophylite, hornblend, alkali amphiboles ). 7/ Mica group: crystal chemistry, classification and natural occurences of minerals in magmatic and metamorphic rocks Pt -stability fields, phase relations (muskovit, biotit, lepidolite). 8/ Minerals Al2SiO5 (kyanite, sillimanite, andalusite) and Al-rich minerals (corundum, diaspore, kaolinite, pyrophylite), crystal chemistry, classification and natural occurences of minerals in magmatic and metamorphic rocks Pt - stability fields, phase relations. 9/ Zeolite group: crystal chemistry, classification and natural occurences of minerals in magmatic, metamorphic and hydrothermal rocks, Pt - stability fields, phase relations, using in industry (natrolite, heulandite, stilbite, laumontite, chabazite, analcim). 10/ Cyklosilicates (beryl, cordierite, sekaninaite) crystal chemistry, classification and natural occurences of minerals in magmatic and metamorphic rocks Pt - stability fields, phase relations.
- Literature
- KLEIN, Cornelis and Cornelius S. HURLBUT. Manual of mineralogy : (after James D. Dana). 21st ed. New York: John Wiley & Sons, 1993, xii, 681 s. ISBN 0-471-57452-X. info
- ZOLTAI, Tibor and James H. STOUT. Mineralogy :concepts and principles. Minneapolis, Minnesota: Burgess publishing company, 1985, x, 505 s. ISBN 0-8087-2606-4. info
- Nesse, William D. Introduction to Mineralogy: Oxford University Press, 2000, 442 s. ISBN 0-19-510691-1
- Assessment methods (in Czech)
- Přednášky a praktická cvičení. Zkouška z teorie v rozsahu sylabu.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught once in two years.
Information on the per-term frequency of the course: Výuka bude probíhat v jarním semestru 2004/2005.
- Enrolment Statistics (Spring 2005, recent)
- Permalink: https://is.muni.cz/course/sci/spring2005/G8561