M6868 Diffrential Equations and Their Applications

Faculty of Science
Spring 2008 - for the purpose of the accreditation
Extent and Intensity
2/2. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Pospíšil, Dr. (lecturer)
Guaranteed by
prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Pospíšil, Dr.
Prerequisites
M1110 Linear algebra I && M1100 Mathematical Analysis I
Any course of calculus and linear algebra, a basic course of ordinary differential equations
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
The aim of the course is to sketch some fundamentals of PDE theory and some advanced parts of ODE theory. The subject will be illustrated by selected deterministic models in biology.
Syllabus
  • 1. First order linear partial differential equations; population model with age distribution. 2. Second order partial differential equations, parabolic equation, separation of variables; spatially structured population models. 3. Reaction-diffusion; models of morphogenesis. 4. Delay ordinary differential equations; delay population models, delay models in physiology.
Literature
  • BRITTON, Nicholas F. Essential mathematical biology. London: Springer, 2003, xv, 335 s. ISBN 1-85233-536-X. info
  • FRANCŮ, Jan. Parciální diferenciální rovnice [Franců, 2003]. 3. vyd. Brno: CERM, 2003, 155 s. ISBN 80-214-2334-X. info
  • MURRAY, J. D. Mathematical biology. 1st ed. New York: Springer-Verlag, 1989, xiv, 767. ISBN 0387194606. info
  • M.Kot, Elements of Mathematical Ecology, Cambridge, 2001
  • Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics.Dordrecht-Boston-London: Kluwer, 1992.501 s. Mathematics and Its Applications; vol. 74. ISBN 0-7923-1594-4.
Assessment methods (in Czech)
Přednáška; ve cvičení řešení konkrétních úloh s aktivní účastí studentů.
Language of instruction
Czech
Further Comments
The course is taught once in two years.
The course is taught: every week.
The course is also listed under the following terms Spring 2004, Spring 2006, Spring 2008, Spring 2010, Spring 2012, spring 2012 - acreditation, Spring 2014, Spring 2016, spring 2018, Spring 2020, Spring 2022, Spring 2023, Spring 2024.