Bi9910 Molecular Biology of the Tumor

Faculty of Science
Spring 2009
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Jana Šmardová, CSc. (lecturer)
Guaranteed by
prof. RNDr. Jan Šmarda, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: prof. RNDr. Jana Šmardová, CSc.
Timetable
Fri 8:00–9:50 C03/117
Prerequisites
( B7090 Eukaryotic cells || Bi7090 Eukaryotic cells ) && ( B7140 Molecular biology of viruses || Bi7140 Molecular biology of viruses )
Essential knowledge of molecular biology of eukaryotic cells.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
At the end of the course students should be able to understand cancerogenesis as multistep process and to describe main molecular mechanisms responsible for tumor progression.
Syllabus
  • 1. Introduction, 2. History of cancer studies, terminology of cancer, oncogenes and tumor suppressor genes; list of processes that malfunction during cancerogenesis; complexity and heterogenity of tumor tissues. 2. Cell cycle regulation, cell cycle machinery, mitogen and antimitogen signaling, cell signaling pathways in healthy and cancer cells. 3. Individual predispositions to cancer, list of important hereditary syndroms connected with increased frequency of cancer and underlying molecular mechanisms, retinoblastoma, Li-Fraumeni syndrom, Ataxia – Telangiectasia, NBS, inherited form of breast cancer (BRCA1, BRCA2), Bloom syndrom, Werner syndrom, Fanconi anemia, malignant melanoma, Xeroderma pigmentosum, Wilms tumor, von Hippel-Lindau syndrom, FAP, Juvenil polyposis coli, Lynch syndrom, Cowden syndrom, hereditary diffuse gastric cancer. 4. Apoptosis and cancer, physiology of apoptosis, regulation of apoptosisvin Caernohabditis elegans, death receptors, the role of mitochondria in apoptosis, Bcl-2 proteins, caspases. 5. Telomeres, telomerase and cancer. Chromosome replication, cel aging, structure of telomeres, function of telomerase in cancer formation. 6. Tumor angiogenesis, physiology of neovascularisation, angiogenesis and its regulation. 7. Metastasis formation, metastatic cascade, ECM degradation, metalloproteinases, adhesive complexes - cadherins, integrins, selectins, immunoglobulin-typu receptors. 8. Genetic instability of tumors, instability of DNA sequences, microsatelite instability; instability in number of chromosomes, control of mitotic spindle. 9. Chromatin remodeling and tumors, mechanisms of chromatin rearrangement, the role in cancerogenesis, Rubinstein-Taybi syndrom, malignant rhabdoid tumors in children, chromatin remodeling and leukemia, chromatin therapy – inhibitors of histon deacetylases, DNA methylation and tumors.
Literature
  • WEINBERG, Robert A. The biology of cancer. 1st ed. New York: Garland Science, 2007, 1 sv. ISBN 9780815340782. info
  • WEINBERG, Robert A. Jediná odrodilá buňka : jak vzniká rakovina. Vyd. 1. Praha: Academia, 2003, 156 s. ISBN 8020010718. info
  • WEINBERG, Robert A. Oncogenes and the molecular origins of cancer. New York: Cold Spring Harbor Laboratory Press, 1989, x, 367 s. ISBN 0-87969-340-1. info
Teaching methods
Lectures followed by class discussions.
Assessment methods
Written test is required to pass the exam. At least 50% of questions has to be answered correctly.
Language of instruction
Czech
Further Comments
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019, Spring 2020, Spring 2021, Spring 2022, Spring 2023, Spring 2024, Spring 2025.
  • Enrolment Statistics (Spring 2009, recent)
  • Permalink: https://is.muni.cz/course/sci/spring2009/Bi9910