PřF:M2110 Linear Algebra II - Course Information
M2110 Linear Algebra and Geometry II
Faculty of ScienceSpring 2009
- Extent and Intensity
- 2/2/0. 4 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- doc. RNDr. Martin Čadek, CSc. (lecturer)
Mgr. Oldřich Spáčil (seminar tutor)
Mgr. Radek Šlesinger, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Wed 11:00–12:50 A,01026
- Timetable of Seminar Groups:
M2110/02: Tue 16:00–17:50 M1,01017, R. Šlesinger
M2110/03: Wed 18:00–19:50 M5,01013, O. Spáčil
M2110/04: Tue 18:00–19:50 M1,01017, R. Šlesinger - Prerequisites
- M1110 Linear Algebra I || M1111 Linear Algebra I ||( FI:MB003 Linear Algebra and Geometry I )
Knowledege of basic notion of linear algebra is supposed. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, B-AP)
- Applied Informatics (programme FI, N-AP)
- Informatics (programme FI, B-IN)
- Informatics (programme FI, N-IN)
- Mathematics - Economics (programme PřF, B-AM) (2)
- Mathematics (programme PřF, B-MA)
- Mathematics (programme PřF, B-MA)
- Profesional Mathematics (programme PřF, B-MA)
- Profesional Statistics and Data Analysis (programme PřF, B-AM)
- Statistics and Data Analysis (programme PřF, B-AM)
- Course objectives
- The aim of this second course in linear algebra is to introduce other basic notions such as affine and projective spaces, bilinear and quadratic forms, eingenvalues and eigenvectors of linear operators. In more details the spaces with scalar product and properties of orthogonal and selfadjoint operators are examined. All is applied in affine and Euclidean geometry. At the end we deal with the Jordan canonical form.
- Syllabus
- Affine geometry: affine spaces and subspaces, affine geometry and affine mappings. Linear forms: dual space, dual basis, dual homomorphism. Bilinear and quadratic forms: definition, matrix with respect to given basis, diagonalization, signature. Euklidean geometry: orthogonal projection, distance and deviation of affine subspaces. Linear operators: invariant subspaces, eigenvalues and eigen vectors, charakteristic polynomial, algebraic and geometric multiplicity of eigenvalues, conditions for diagonalization. Ortogonal a unitar operators: definition and basic properties, eigenvalues, geometric meaning. Self adjoint operators: adjoint operator, symmetric and hermitian matrices, spectral decomposition. Jordan canonical form: nilpotent endomorphisms, root subspaces, computations.
- Literature
- Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
- Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
- Assessment methods
- Form: lectures and exercises. Exam: witten and oral. Requirements to the exam: to obtain internal credit from exercuises.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Information on completion of the course: ukončení zápočtem možné pouze rozhodnutím učitele
The course is taught annually.
Credit evaluation note: 2 kr. zápočet. - Listed among pre-requisites of other courses
- Teacher's information
- http://www.math.muni.cz/~cadek
- Enrolment Statistics (Spring 2009, recent)
- Permalink: https://is.muni.cz/course/sci/spring2009/M2110