PřF:M4170 Measure and Integral - Course Information
M4170 Measure and Integral
Faculty of ScienceSpring 2009
- Extent and Intensity
- 2/2/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Ladislav Adamec, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Bedřich Půža, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 16:00–17:50 M4,01024
- Timetable of Seminar Groups:
- Prerequisites
- M3100 Mathematical Analysis III
Differential and integral calculus in several veriables, metric spaces. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, N-MA)
- Course objectives
- The theory of measure and integration is nowadays a standard part of the basic course of mathematical analysis that is necessary for further successful study of modern mathematical analysis and its applications e.g. in the theory of differential equations or in the probability theory.
The aim of the course is to give a slow introduction to the abstract measure theory as well as to the theory of abstract general Lebesgue integration. This approach will give working knowledge of the field.
In addition to the abstract theory of measure and abstract integration on measure spaces the course contains theory of Lebesgue integration in Rn. - Syllabus
- 1) Fundamental concepts: Sigma-algebra, Borel set, measure, measurable sets.
- 2) Constructions of measures: Outer measures.
- 3) Lebesgue measure in Rn: Outer Lebesgue measure in Rn, Lebesgue measurable sets.
- 4) Measurable functions.
- 5) The abstract Lebesgue integral.
- 6) The Lebesgue integral in Rn. Comparision of Lebesgue and Rieman integrals.
- 7) Fubini's theorem.
- 8) Parametric integrals.
- 9) Change of variable theorem.
- Literature
- RUDIN, Walter. Analýza v reálném a komplexním oboru. Vyd. 2., přeprac. Praha: Academia, 2003, 460 s. ISBN 8020011250. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- SIKORSKI, Roman. Diferenciální a integrální počet : funkce více proměnných. Translated by Ilja Černý. 2., změn. a dopl. vyd., Vyd. Praha: Academia, 1973, 495 s. URL info
- Assessment methods
- lectures, class exercises;
a written examination followed by an oral examination. - Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
- Enrolment Statistics (Spring 2009, recent)
- Permalink: https://is.muni.cz/course/sci/spring2009/M4170